Modeling Immune-Mediated Tumor Growth and Treatment

  • Lisette de Pillis
  • Ami RadunskayaEmail author
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The immune response is an important factor in the progression of cancer, and this response has been harnessed in a variety of treatments for a range of cancers. In this chapter we develop mathematical models that describe the immune response to the presence of a tumor. We then use these models to explore a variety of immunotherapy treatments, both alone and in combination with other therapies.


Tumor-immune interactions Effector cell kill rate Therapy optimization Agent-based models Immune response kinetics 



Earlier, more detailed versions of much of the material in this chapter was published in [13, 14, 15, 16, 39, 47, 48]. A. Radunskaya was partially supported by NSF grant DMS-1016136.


  1. 1.
    J.A., Adam, N. Bellomo, A Survey of Models for Tumor Immune Systems Dynamics (Springer, Newyork, 1997)Google Scholar
  2. 2.
    T. Alarcon, H. Byrne, P. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    G. Alatrash, H. Jakher, P.D. Stafford, E.A. Mittendorf, Cancer immunotherapies, their safety and toxicity. Expert Opin. Drug Saf. 12, 631–645 (2013)CrossRefGoogle Scholar
  4. 4.
    N. Bellomo, A. Bellouquid, M. Delitala, Mathematical topics on the modelling complex multicellular systems and tumor immune cells competition. Math. Models Methods Appl. Sci. 14(11), 1683–1733 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math. Comput. Model. 32(3), 413–452 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Cappuccio, M. Elishmereni,, Z. Agur, Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a mathematical model. Cancer Res. 66(14), 7293–7300 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Caravagna, A. d’Onofrio, P. Milazzo, R. Barbuti, Tumour suppression by immune system through stochastic oscillations. J. Theor. Biol. 265(3), 336–345 (2010)Google Scholar
  8. 8.
    A. Cerwenker, L. Lanier, Natural killer cells, viruses and cancer. Nat. Immunol. 41–48 (2001)Google Scholar
  9. 9.
    M.A. Cheever, PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 35203,526 (2011)CrossRefGoogle Scholar
  10. 10.
    S.E. Clare, F. Nakhlis, J.C. Panetta, Molecular biology of breast cancer metastasis: The use of mathematical models to determine relapse and to predict response to chemotherapy in breast cancer. Breast Cancer Res. 2, 430–435 (2000)CrossRefGoogle Scholar
  11. 11.
    D. Cunningham, Y. Humblet, S. Siena, Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–45 (2004)CrossRefGoogle Scholar
  12. 12.
    L. de Pillis, D. Mallet, A. Radunskaya, Spatial tumor-immune modeling. Comput. Math. Methods Med. 7(2–3), 159–176 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    L. de Pillis, A. Radunskaya, H. Savage, Mathematical model of colorectal cancer with monoclonal antibody treatments. URL Preprint
  14. 14.
    L. de Pillis, A.E. Radunskaya, The dynamics of an optimally controlled tumor model: A case study. Math. Comput. Model. (Special Issues) 37(11), 12211,244 (2003)Google Scholar
  15. 15.
    L.G. de Pillis, A.E. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: An optimal control approach. J. Theor. Med. 3, 79–100 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    L.G., de Pillis, A.E. Radunskaya, C.L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005)Google Scholar
  17. 17.
    V.J. De Vita, S. Hellman, S. Rosenberg, Cancer: Principles and Practice of Oncology, 7 edn. (Lippincott Wiliams & Wilkins, Sydney 2000)Google Scholar
  18. 18.
    A. Diefenbach, E.R. Jensen, A.M. Jamieson, D.H.: Raulet, Rae1 and h60 ligands of the nkg2d receptor stimulate tumour immunity. Nature 413(6852), 165–171 (2001)Google Scholar
  19. 19.
    A. d’Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedical inferences. Phys. D 208(3), 220–235 (2005)Google Scholar
  20. 20.
    A. d’Onofrio, Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math. Comput. Model. 47(5), 614–637 (2008)Google Scholar
  21. 21.
    A. d’Onofrio, A. Gandolfi, Resistance to antitumor chemotherapy due to bounded-noise-induced transitions. Phys. Rev. E 82, 061,901 (2010)Google Scholar
  22. 22.
    C. DuBois, J. Farnham, E. Aaron, A. Radunskaya, A multiple time-scale computational model of a tumor and its micro environment. MBE 10(1), 121–150 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M.E. Dudley, J.R. Wunderlich, P.F. Robbins, J.C. Yang, P. Hwu, D.J. Schwartzentruber, S.L. Topalian, R. Sherry, N.P. Restifo, A.M. Hubicki, M.R. Robinson, M. Raffeld, P. Duray, C.A. Seipp, L. Rogers-Freezer, K.E. Morton, S.A. Mavroukakis, D.E. White, S.A. Rosenberg, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298(5594), 850–854 (2002)CrossRefGoogle Scholar
  24. 24.
    O.K. Dzivenu, J. O’Donnell-Tormey, Cancer and the immune system: the vital connection. Online (2003). URL
  25. 25.
    P. Ehrlich, Über den jetzigen stand der karzinomforschung. Ned. Tijdschr. Geneeskd. 5, 273–290 (1909)Google Scholar
  26. 26.
    A. Farrell, Milestone 3, (1909) Immune surveillance, hide and seek. Nat. Med. (2006)Google Scholar
  27. 27.
    S.C. Ferreira, M.L. Martins, M.J. Vilela, Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E 65, 021,907 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Folkman, M. Hochberg, Self-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753 (1973)CrossRefGoogle Scholar
  29. 29.
    C. Gravalos, J. Cassinello, P. Garcia-Alfonso, A. Jimeno, Integration of panitumumab into the treatment of colorectal cancer. Crit. Rev. Oncol. Hematol. 74(1), 16–26 (2010)CrossRefGoogle Scholar
  30. 30.
    H. Greenspan, Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51, 317–338 (1972)zbMATHGoogle Scholar
  31. 31.
    A.M. Grothey, Defining the role of panitumumab in colorectal cancer. Community Oncology 3, 10–16 (2006)Google Scholar
  32. 32.
    B.J. Kennedy, Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood 35(6), 751–760 (1970)Google Scholar
  33. 33.
    D.D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor - immune interaction. J. Math. Biol. 37(3), 235–252 (1998)CrossRefzbMATHGoogle Scholar
  34. 34.
    Krikorian, J., Portlock, C., Cooney, D., Rosenberg, S.: Spontaneous regression of non-hodgkin’s lymphoma: A report of nine cases. Cancer 46, 2093–2099 (1980)CrossRefGoogle Scholar
  35. 35.
    N.N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive ctl immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol. Immunother. 57(3), 425–439 (2008)CrossRefGoogle Scholar
  36. 36.
    V. Kuznetsov, in A Survey of Models for Tumor-Immune System Dynamics, eds. by J. Adam, N. Bellomo Basic Models of Tumor-Immune System Interactions- Identification, Analysis and Predictions (Birkhauser, Basel 1997)Google Scholar
  37. 37.
    H.J. Lenz, Cetuximab in the management of colorectal cancer. Biologics 2, 77–91 (2007)Google Scholar
  38. 38.
    A. Lin, A model of tumor and lymphocyte interactions. Discrete Contin. Dyn. Syst. Ser. B 4(1), 241–266 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mallett, D., de Pillis, L.: A cellular automata model of tumor-immunesystem interactions. J. Theor. Biol. 239, 334–350 (2006)CrossRefGoogle Scholar
  40. 40.
    E. Martinelli, R. De Palma, M. Orditura, F. De Vita, F. Ciardiello, Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol. 158, 1–9 (2009)CrossRefGoogle Scholar
  41. 41.
    A. Matzavinos, M.A. Chaplain, V.A. Kuznetsov, Mathematical modelling of the spatio-temporal response of cytotoxic t-lymphocytes to a solid tumour. Math. Med. Biol. 21(1), 1–34 (2004)CrossRefzbMATHGoogle Scholar
  42. 42.
    L. Norton, R. Simon, H. Brereton, A. Bogden, Predicting the course of gompertzian growth. Nature 264, 542–545 (1976)CrossRefGoogle Scholar
  43. 43.
    W. Paul, Fundamental Immunology, 5 edn. Lippincott, Williams and Wilkins Publishers, Sydney (2003)Google Scholar
  44. 44.
    A.S. Perelson, G. Weisbuch, Immunology for physicists. Rev. Mod. Phys. 69, 1219–1268 (1997)CrossRefGoogle Scholar
  45. 45.
    S. Pilon-Thomas, M., Verhaegen, J. Mulé, Dendritic cell-based therapeutics for breast cancer. Heart Disease 20, 65–71 (2004)Google Scholar
  46. 46.
    O. Preynat-Seauve, E. Contassot, P. Schuler, L.E. French, B. Huard, Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by t cells. Melanoma Res. 17, 169–176 (2007)CrossRefGoogle Scholar
  47. 47.
    A. Radunskaya, S. Hook, in: New Challenges for Cancer Systems Biomedicine eds. by A. d’Onofrio, P. Cerrai, A. Gandolfi, Modeling the kinetics of the Immune Response (Springer, Newyork, 2012), pp. 267–282.Google Scholar
  48. 48.
    A. Radunskaya, L. de Pillis, A. Gallegos, A model of dendritic cell therapy for melanoma. Front. Oncology 3(56), 223–228 (2013)Google Scholar
  49. 49.
    H. Riedel, in The Cancer Handbook Wiley, ed. by M. Alison Models for tumour growth and differentiations (New Jersey Institute of Technology, New Jersey 2004)Google Scholar
  50. 50.
    S.A. Rosenberg, J. Yang, S.L.E.A. Topalian, Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994)CrossRefGoogle Scholar
  51. 51.
    J. Schmollinger, R. Vonderhelde, K. Hoar, R. Vonderheide, K. Hoar, Maecker, B., J., F.S., H. Schultze, R. Soiffer, K. Jung, M. Kuroda, N. Letvin, E. Greenfield, M. Mihm, J. Kutok, G.Dranoff, Melanoma inhibitor of apoptosis protein (ml-iap) is a target for immune-mediated tumor destruction. Proc. Natl. Acad. Sci. USA 100(6), 3398–3403 (2003)Google Scholar
  52. 52.
    J. Sherratt, M. Nowak, Oncogenes, anti-oncogenes and the immune response to cancer. Proc. R. Soc. Lond. B 248, 261–271 (1992)CrossRefGoogle Scholar
  53. 53.
    S. Siena, A. Sartore-Bianchi, F. Di Nicolantonio, J. Balfour, A. Bardelli, Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J. Natl. Cancer Inst. 101, 1–17 (2009)CrossRefGoogle Scholar
  54. 54.
    R. Soiffer, T. Lynch, M. Mihm, K. Jung, C. Rhuda, J. Schmollinger, F. Hodi, L. Liebster, P. Lam, S. Mentzer, S. Singer, K. Tanabe, A. Cosimi, R. Duda, A. Sober, A. Bhan, J. Daley, D. Neuberg, G. Parry, J. Rokovich, L. Richards, J. Drayer, A. Berns, S. Clift, L. Cohen, R. Mulligan, G. Dranoff, Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 95, 13,141–13,146 (1998)CrossRefGoogle Scholar
  55. 55.
    J. Speer, V. Petrosky, M. Retsky, R. Wardwell, A stochastic numerical model of breast cancer growth that simulates clinical data. Cancer Res. 44, 41244,130 (1984)Google Scholar
  56. 56.
    C.O. Starnes, Coley’s toxins in perspective. Nature 357, 11–12 (1992)CrossRefGoogle Scholar
  57. 57.
    O. von Stryk, User’s guide for DIRCOL: A direct collocation method for the numerical solution of optimal control problems. Lehrstuhl M2 Numerische Mathematik, Technische Universitaet Muenchen (1999)Google Scholar
  58. 58.
    R.M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988)CrossRefGoogle Scholar
  59. 59.
    R. Thomlinson, Measurement and management of carcinoma of the breast. Clin. Radiol. 33(5), 481–493 (1982)CrossRefGoogle Scholar
  60. 60.
    L. Zhang, J. Conejo-Garcia, D. Katsaros, P. Gimotty, M. Massobrio, G. Regnani, A. Makrigiannakis, H. Gray, K. Schlienger, M. Liebman, S. Rubin, G. Coukos, Intratumoral t cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348(3), 203–213 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Harvey Mudd CollegeClaremontUSA
  2. 2.Pomona CollegeClaremontUSA

Personalised recommendations