Advertisement

Avascular Tumor Growth Modelling: Physical Insights to Skin Cancer

  • Martina Ben AmarEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

In this chapter I present the state-of-the-art theoretical models for avascular tumor growth which are well established nowadays. I focus on models able to treat morphologic instabilities and phase segregation, two typical features of skin cancer for example melanoma. Contrary to experiments made in vitro on growing colonies, I show that the geometry of melanoma confined in the epidermis in the early stages of tumor growth suppresses the necrotic core and is responsible of inhomogeneities due to aggregation of cancerous cells. A relatively simple model consisting in the adaptation of the two-phase mixture model is enough to explain the morphologies of the tumor not only qualitatively but also quantitatively. Despite the complexity of the nonlinear partial differential equations that results from this model, I also present analytical treatments based on the techniques of nonlinear physics and W.K.B approximation to explain the observed structures in dermatology.

Keywords

Tumor multiphase modeling Contour instability-Phase segregation Skin cancer morphology Clinical dermatology 

Notes

Acknowledgements

This chapter is a summary of results about tumor modelling obtained in Ecole Normale Supérieure during these last years. I strongly acknowledge three Ph.D students, Julien Dervaux, Clément Chatelain and Thibaut Balois, for their intensive collaboration on this very rich topic between mathematics, nonlinear and soft matter physics and biology. This work is supported in part by AAP INSERM 2012.

References

  1. 1.
    J. Adam, A mathematical model of tumor growth. ii. Effects of geometry and spatial nonuniformity on stability. Math. Biosci. 86, 183–211 (1987)Google Scholar
  2. 2.
    M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100(7), 3983–3988 (2003)Google Scholar
  3. 3.
    D. Alemani, F. Pappalardo, S. Pennisi, M. Motta, V. Brusic, Combining cellular automata and lattice boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition. J. Immunol. Methods 376(1–2), 55–68 (2012)Google Scholar
  4. 4.
    D. Ambrosi, F. Mollica, On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    D. Ambrosi, F. Mollica, The role of stress in the growth of a multicell spheroid. J. Math. Biol. 48(5), 477–499 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    D. Ambrosi, P. Preziosi, On the closure of mass balance models for tumour growth. Math. Model Methods Appl. Sci. 12, 737–754 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model Mechanobiol. 8(5), 397–413 (2009)Google Scholar
  8. 8.
    A.R. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math. Med. Biol. 22(2), 163–186 (2005)zbMATHGoogle Scholar
  9. 9.
    A.R. Anderson, A.M. Weaver, P.T. Cummings, V. Quaranta, Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5), 905–915 (2006)Google Scholar
  10. 10.
    R.P. Araujo, D.L. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)MathSciNetGoogle Scholar
  11. 11.
    R.P. Araujo, D.L.S. McElwain, A mixture theory for the genesis of residual stresses in growing tissues. SIAM J. Appl. Math. 65, 1261–1284 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    G. Argenziano, H. Kittler, G. Ferrara, P. Rubegni, J. Malvehy, S. Puig, L. Cowell, I. Stanganelli, V. De Giorgi, L. Thomas, P. Bahadoran, S.W. Menzies, D. Piccolo, A.A. Marghoob, I. Zalaudek, Slow-growing melanoma: a dermoscopy follow-up study. Br. J. Dermatol. 162(2), 267–273 (2010)Google Scholar
  13. 13.
    T. Balois, M. Ben Amar, Morphology of melanocytic lesions in situ, Nat. Sci. Rep. 4, 3622 (2014). doi:10.1038/srep03622Google Scholar
  14. 14.
    T. Balois, C. Chatelain, M. Ben Amar, Patterns in melanocytic lesions: impact of the geometry on growth and transport inside the epidermis, Journ. Roy. Soc. Interface, 11, 20140339 (2014)Google Scholar
  15. 15.
    M.R. Baer, J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12, 861–889 (1986)zbMATHGoogle Scholar
  16. 16.
    M.B. Baraldi, A.A. Alemi, J.P. Sethna, S. Caracciolo, C.A.M. La Porta, S. Zapperi, Growth and form of melanoma cell colonies. J. Stat. Mech. 02, P02032 (2013)Google Scholar
  17. 17.
    B. Basaliy, A. Friedman, Global existence and asymptotic stability for an elliptic-parabolic free boundary problem: an application to a model of tumor growth. Indiana Univ. Math. J. 52, 1265–1303 (2003)MathSciNetGoogle Scholar
  18. 18.
    M. Basan, T. Risler, J.F. Joanny, X. Sastre-Garau, J. Prost, Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3(4), 265–272 (2003)Google Scholar
  19. 19.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967), pp. 131–173zbMATHGoogle Scholar
  20. 20.
    E.L. Bearer, J.S. Lowengrub, H.B. Frieboes, Y.-L. Chuang, F. Jin, S.M. Wise, M. Ferrari, D.B. Agus, V. Cristini, Multiparameter computational modelling of tumor invasion. Cancer Res. 69(10), 4493–4501 (2009)Google Scholar
  21. 21.
    B. Bedogni, S.M. Welford, D.S. Cassarino, B.J. Nickoloff, A.J. Giaccia, M.B. Powell, The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell 8, 443–454 (2005)Google Scholar
  22. 22.
    M. Ben Amar, Chemotaxis migration and morphogenesis of living colonies. Eur. Phys. J. E 36, 64–76 (2013). doi:10.1140/epje/i2013-13064-5Google Scholar
  23. 23.
    M. Ben Amar, A. Goriely, Growth and instability in elastic tissue. J. Mech. Phys. Solids 53(20), 2284–2319 (2005)MathSciNetzbMATHGoogle Scholar
  24. 24.
    M. Ben Amar, F. Jia, Anisotropic growth shapes intestinal tissues during embryogenesis. Proc. Natl. Acad. Sci. USA 110(26), 10525–10530 (2013)Google Scholar
  25. 25.
    M. Ben Amar, C. Chatelain, P. Ciarletta, Contour instabilities in early tumor growth models. Phys. Rev. Lett. 106, 148101–148104 (2011)Google Scholar
  26. 26.
    A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Modelling the evolution of a tumoral multicellular spheroid as a two-fluid Bingham-like system. Math. Mod. Meth. Appl. Sci. 23, 2561–2602 (2013)MathSciNetzbMATHGoogle Scholar
  27. 27.
    T. Borovski, L. Vermeulen, M.R. Sprick, J.P. Medema, One renegade cancer stem cell? Cell Cycle 8(6), 803–808 (2009)Google Scholar
  28. 28.
    A. Breslow, Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann. Surg. 172(5), 902–908 (1970)Google Scholar
  29. 29.
    A.C. Burton, Rate of growth of solid tumours as a problem of diffusion. Growth 30(2), 157–176 (1966)Google Scholar
  30. 30.
    H.M. Byrne, M.A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130(2), 151–181 (1995)zbMATHGoogle Scholar
  31. 31.
    H.M. Byrne, M.A. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids. Eur. J. Appl. Math. 8, 639–658 (1997)MathSciNetzbMATHGoogle Scholar
  32. 32.
    H.M. Byrne, D. Drasdo Individual-based and continuum models of growing cell populations: a comparison. J. Math. Biol. 58(4–5), 657–687 (2009)MathSciNetGoogle Scholar
  33. 33.
    H.M. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20(4), 341–366 (2003)MathSciNetzbMATHGoogle Scholar
  34. 34.
    H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)MathSciNetzbMATHGoogle Scholar
  35. 35.
    H.M. Byrne, T. Alarcon, M.R. Owen, S.D. Webb, P.K. Maini, Modelling aspects of cancer dynamics: a review. Philos. Transact. A Math. Phys. Eng. Sci. 364(1843), 1563–1578 (2006)MathSciNetGoogle Scholar
  36. 36.
    G. Caravagna, R. Barbuti, A. d’Onofrio, Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinform.12, S8 (2012)Google Scholar
  37. 37.
    G. Caravagna, G. Mauri, A. d’Onofrio, The interplay between intrinsic and extrinsic noise in biomolecular networks. PLoS ONE 8(2), e51174 (2013)Google Scholar
  38. 38.
    L. Cardamone, A. Valentín, J.F. Eberth, J.D. Humphrey, Origin of axial prestretch and residual stress in arteries. Biomech. Model Mechanobiol. 8(6), 431–446 (2009)Google Scholar
  39. 39.
    L.I. Cardenas-Navia, D. Yu, R.D. Braun, D.M. Brizel, T.W. Secomb, M.W. Dewhirst, Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing. Cancer Res. 64(17), 6 (2004)Google Scholar
  40. 40.
    M.A. Chaplain, B.D. Sleeman, Modelling the growth of solid tumours and incorporating a method for their classification using nonlinear elasticity theory. J. Math. Biol. 31(5), 431–473 (1993)MathSciNetzbMATHGoogle Scholar
  41. 41.
    C. Chatelain, T. Balois, P. Ciarletta, M. Ben Amar, Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture. New J. Phys. 13, 115013 (2011)Google Scholar
  42. 42.
    C. Chatelain, P. Ciarletta, M. Ben Amar, Morphological changes in early melanoma development: influence of nutrients, growth inhibitors and cell-adhesion mechanisms. J. Theor. Biol. 290, 46–59 (2011)MathSciNetGoogle Scholar
  43. 43.
    L. Chin, L.A. Garraway, D.E. Fisher, Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 20(16), 2149–2182 (2006)Google Scholar
  44. 44.
    P. Ciarletta, L. Foret, M. Ben Amar, The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis. J. R. Soc. Interface 8(56), 345–368 (2011)Google Scholar
  45. 45.
    A.A. Creasey, H.S. Smith, A.J. Hackett, K. Fukuyama, W.L. Epstein, S.H. Madin, Biological properties of human melanoma cells in culture. In Vitro 15(5), 342–350 (1979)Google Scholar
  46. 46.
    V. Cristini, J. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth. J. Math. Biol. 46(3), 191–224 (2003)MathSciNetzbMATHGoogle Scholar
  47. 47.
    V. Cristini, X. Li, J.S. Lowengrub, S.M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J. Math. Biol. 58(4–5), 723–763 (2009)MathSciNetGoogle Scholar
  48. 48.
    A. d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E 76, 031920–031927 (2007)Google Scholar
  49. 49.
    A.S. Deakin, Model for the growth of a solid in vitro tumor. Growth 39(1), 159–165 (1975)MathSciNetGoogle Scholar
  50. 50.
    R. Decker, R.L. Brown, A turbulent mixture theory for the atmospheric mixture of snow and air. Ann. Glaciol. 4, 37–41 (1983)Google Scholar
  51. 51.
    J. Dervaux, Morphogenèse et Elasticité en géométrie mince. Ph.D. thesis, Université Paris Diderot, 2010Google Scholar
  52. 52.
    J. Dervaux, M. Ben Amar, Buckling condensation in constrained growth. J. Mech. Phys. Solids 59, 538–560 (2011)MathSciNetzbMATHGoogle Scholar
  53. 53.
    J. Dervaux, M. Ben Amar, Mechanical instabilities of gels. Ann. Rev. Condensed Matter Phys. 3, 311–332 (2012)Google Scholar
  54. 54.
    L.A. Dethlefsen, J.M. Prewitt, M.L. Mendelsohn, Analysis of tumor growth curves. J. Natl. Cancer Inst. 40(2), 389–405 (1968)Google Scholar
  55. 55.
    M. Doi, A. Onuki, Dynamic coupling between stress and composition in polymer solutions and blends. J. Phys. II 2, 1631–1656 (1992)Google Scholar
  56. 56.
    D. Drasdo, On selected individual-based approaches to the dynamics of multicellular systems, in Multiscale Modelling, ed. by W. Alt, M. Chaplain, M. Griebel, J. Lenz (Birkhäuser, Basel, 2003), pp. 169–205Google Scholar
  57. 57.
    D. Drasdo, S. Hoehme, A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys. Biol. 2(3), 133–147 (2005)Google Scholar
  58. 58.
    K.A. Ellem, G.F. Kay, The nature of conditioning nutrients for human malignant melanoma cultures. J. Cell Sci. 62, 249–266 (1983)Google Scholar
  59. 59.
    J. Fink, N. Carpi, T. Betz, A. Bétard, M. Chebah, A. Azioune, M. Bornens, C. Sykes, L. Fetler, D. Cuvelier, M. Piel, External forces control mitotic spindle positioning. Nat. Cell Biol. 13(7), 771–778 (2011)Google Scholar
  60. 60.
    J. Folkman, M. Hochberg, Self-regulation of growth in three dimensions. J. Exp. Med. 138(4), 745–753 (1973)Google Scholar
  61. 61.
    R.A. Foty, M.S. Steinberg, The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278(1), 255–263 (2005)Google Scholar
  62. 62.
    A. Friedman, B. Hu, Bifurcation from stability to instability for a free boundary problem modelling tumor growth by Stokes equation. J. Math. Anal. Appl. 327, 643–664 (2007)MathSciNetzbMATHGoogle Scholar
  63. 63.
    A. Friedman, F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems: an application to a model of tumor growth. Trans. Am. Math. Soc. 353, 1587–1634 (2001)MathSciNetzbMATHGoogle Scholar
  64. 64.
    R.A. Gatenby, P.K. Maini, Mathematical oncology: cancer summed up. Nature 421(6921), 321–321 (2003)Google Scholar
  65. 65.
    E. Gentilhomme, Y. Neveux, Physiologie de la peau et explorations fonctionnelles cutanées, ed. by P. Agache (Editions Médicales Internationales, Cachan, 2000), pp. 165–172Google Scholar
  66. 66.
    J.A. Glazier, F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47(3), 2128–2154 (1993)Google Scholar
  67. 67.
    S.C. Glotzer, E.A. Di Marzio, M. Muthukumar, Reaction-controlled morphology of phase-separating mixtures. Phys. Rev. Lett. 74(11), 2034–2037 (1995)Google Scholar
  68. 68.
    A. Goriely, M. Ben Amar, Differential growth and instability of spherical shells. Phys. Rev. Lett. 94, 198103–198106 (2005)Google Scholar
  69. 69.
    L. Graziano, L. Preziosi, Modelling of biological materials, in Mechanics in Tumor Growth (Birkhauser, Basel, 2007), pp. 267–328Google Scholar
  70. 70.
    H.P. Greenspan, Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. LI, 317–340 (1972)Google Scholar
  71. 71.
    H.P. Greenspan, On the growth and stability of cell cultures and solid tumors. J. Theor. Biol. 56, 229–242 (1976)MathSciNetGoogle Scholar
  72. 72.
    G. Griffon-Etienne, Y. Boucher, C. Brekken, H.D. Suit, R.K. Jain, Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59(15), 3776–3782 (1999)Google Scholar
  73. 73.
    B.M. Gumbiner, Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84(3), 345–357 (1996)Google Scholar
  74. 74.
    N.K. Haass, K.S.M. Smalley, M. Herlyn, The role of altered cell–cell communication in melanoma progression. J. Mol. Histol. 35(3), 309–318 (2004)Google Scholar
  75. 75.
    J.M. Halbleib, W.J. Nelson, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 20(23), 3199–3214 (2006)Google Scholar
  76. 76.
    F.G. Haluska, H. Tsao, H. Wu, F.S. Haluska, V. Lazar, A. Goel, Genetic alterations in signaling pathways in melanoma. Clin. Cancer Res. 12, 2301–2307 (2006)Google Scholar
  77. 77.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)Google Scholar
  78. 78.
    G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15(8), 778–783 (1997)Google Scholar
  79. 79.
    S. Hoehme, D. Drasdo, A cell-based simulation software for multi-cellular systems. Bioinformatics 26(20), 2641–2642 (2010)Google Scholar
  80. 80.
    M.E. Hystad, E.K. Rofstad, Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids. Int. J. Cancer 57(4), 532–537 (1994)Google Scholar
  81. 81.
    R.K. Jain, Transport of molecules in the tumor interstitium: a review. Cancer Res. 47(12), 3039–3051 (1987)Google Scholar
  82. 82.
    F. Jia, M. Ben Amar, Theoretical analysis of growth or swelling wrinkles on constrained soft slabs. Soft Matter 9, 8216–8226 (2013)Google Scholar
  83. 83.
    M.E. Johnson, D. Blankschtein, R. Langer, Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86(10), 1162–1172 (1997)Google Scholar
  84. 84.
    F. Kallinowski, K.H. Schlenger, S. Runkel, M. Kloes, M. Stohrer, P. Okunieff, P. Vaupel, Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res. 49(14), 3759–3764 (1989)Google Scholar
  85. 85.
    J. Kanitis, Biologie de la peau humaine, ed. by D. Schmitt (Les éditions INSERM, Paris, 1997), pp. 1–20Google Scholar
  86. 86.
    P.M. van Kemenade, J.M. Huyghe, L.F.A. Douven, Triphasic fe modelling of skin water barrier. Transport Porous Media 50, 93–109 (2003)Google Scholar
  87. 87.
    A.M. Klein, V. Nikolaidou-Neokosmidou, D.P. Doupè, P.H. Jones, B.D. Simons, Patterning as a signature of human epidermal stem cell regulation. J. R. Soc. Interface 8(65), 1815–1824 (2011)Google Scholar
  88. 88.
    C.A. Kristensen, M. Nozue, Y. Boucher, R.K. Jain, Reduction of interstitial fluid pressure after tnf-alpha treatment of three human melanoma xenografts. Br. J. Cancer 74(4), 533–536 (1996)Google Scholar
  89. 89.
    S. Kuphal, A. Bosserhoff, Recent progress in understanding the pathology of malignant melanoma. J. Pathol. 219(4), 400–409 (2009)Google Scholar
  90. 90.
    Y. Kuwahara, Y. Shima, D. Shirayama, M. Kawai, K. Hagihara, T. Hirano, J. Arimitsu, A. Ogata, T. Tanaka, I. Kawase, Quantification of hardness, elasticity and viscosity of the skin of patients with systemic sclerosis using a novel sensing device (vesmeter): a proposal for a new outcome measurement procedure. Rheumatology (Oxford) 47(7), 1018–1024 (2008)Google Scholar
  91. 91.
    L.D. Landau, E.M. Lifshitz, Statistical Physics, 1st edn. (Pergamon Press, Oxford, 1980)Google Scholar
  92. 92.
    K.A. Landman, C.P. Please, Tumour dynamics and necrosis: surface tension and stability. IMA J. Math. Appl. Med. Biol. 18(2), 131–158 (2001)zbMATHGoogle Scholar
  93. 93.
    C.A.M. La Porta, S. Zapperi, J.P. Sethna, Senescent cells in growing tumors: population dynamics and cancer stem cells. PLoS Comput. Biol. 8, e1002316 (2012)Google Scholar
  94. 94.
    L. Leibler, Theory of microphase separation in block copolymers. Macromolecules 13, 1602–1617 (1980)Google Scholar
  95. 95.
    X. Li, V. Cristini, Q. Nie, J. Lowengrub, Nonlinear three-dimensional simulation of solid tumor growth. Discrete Dyn. Contin. Dyn. Syst. B 7, 581–604 (2007)MathSciNetzbMATHGoogle Scholar
  96. 96.
    W. Liu, J.P. Dowling, W.K. Murray, G.A. McArthur, J.F. Thompson, R. Wolfe, J.W. Kelly, Rate of growth in melanomas: characteristics and associations of rapidly growing melanomas. Arch. Dermatol. 142(12), 1551–1558 (2006)Google Scholar
  97. 97.
    J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23(1), R1–R9 (2010)MathSciNetzbMATHGoogle Scholar
  98. 98.
    B.D. MacArthur, C.P. Please, Residual stress generation and necrosis formation in multi-cell tumour spheroids. J. Math. Biol. 49(6), 537–552 (2004)MathSciNetzbMATHGoogle Scholar
  99. 99.
    C. Mateus, C. Robert, Major therapeutic advances in the treatment of metastatic melanoma. Bull. Cancer 99(6), 619–625 (2012)Google Scholar
  100. 100.
    W.V. Mayneord, On the law of growth of Jensen’s rat sarcoma. Am. J. Cancer 16, 841–846 (1932)Google Scholar
  101. 101.
    D.L.S. McElwain, L.E. Morris, Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth. Math. Biosci. 39, 147–157 (1978)Google Scholar
  102. 102.
    S.J. Miller, Biology of basal cell carcinoma (Part II). J. Am. Acad. Dermatol. 24, 161–175 (1991)Google Scholar
  103. 103.
    T. Mueller, A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)zbMATHGoogle Scholar
  104. 104.
    W. Mueller-Klieser, Multicellular spheroids. A review on cellular aggregates in cancer research. J. Cancer Res. Clin. Oncol. 113(2), 101–122 (1987)Google Scholar
  105. 105.
    A. Neagu, K. Jakab, R. Jamison, G. Forgacs, Role of physical mechanisms in biological self-organization. Phys. Rev. Lett. 95(17), 178104–178107 (2005)Google Scholar
  106. 106.
    A. Nose, A. Nagafuchi, M. Takeichi, Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54(7), 993–1001 (1988)Google Scholar
  107. 107.
    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2002)zbMATHGoogle Scholar
  108. 108.
    J.M. Pérez-Pomares, R.A. Foty, Tissue fusion and cell sorting in embryonic development and disease: biomedical implications. Bioessays 28(8), 809–821 (2006)Google Scholar
  109. 109.
    K. Pham, H.B. Frieboes, V. Cristini, J.S. Lowengrub, Predictions of tumour morphological stability and evaluation against experimental observations. J. R. Soc. Interface 8(54), 16–29 (2011)Google Scholar
  110. 110.
    J.M. Pimiento, E.M. Larkin, K.S.M. Smalley, G.L. Wiersma, N.R. Monks, I.V. Fedorenko, C.A. Peterson, B.J. Nickoloff, Melanoma genotypes and phenotypes get personal. Lab. Invest. 93, 858–867 (2013)Google Scholar
  111. 111.
    C.P. Please, G.J. Pettet, D.L.S. McElwain, A new approach to modelling the formation of necrotic regions in tumours. Appl. Math. Lett. 11, 89–94 (1998)MathSciNetzbMATHGoogle Scholar
  112. 112.
    C.P. Please, G.J. Pettet, D.L.S. McElwain, Avascular tumour dynamics and necrosis. Math. Model Methods Appl. Sci. 9, 569–579 (1999)zbMATHGoogle Scholar
  113. 113.
    N.J. Poplawskia, U. Agero, J.S. Gens, M. Swat, J.A. Glazier, A.R. Anderson, Front instabilities and invasiveness of simulated avascular tumors. Bull. Math. Biol. 71, 1189–1227 (2009)MathSciNetGoogle Scholar
  114. 114.
    L. Preziosi, H.M. Byrne, modelling solid tumor growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)Google Scholar
  115. 115.
    L. Preziosi, A. Farina, On Darcy law for growing porous media. Int. J. Nonlinear Mech. 37, 485–491 (2002)zbMATHGoogle Scholar
  116. 116.
    L. Preziosi, G. Vitale, A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Model Meth. Appl. S 21, 1901–1932 (2011)MathSciNetzbMATHGoogle Scholar
  117. 117.
    A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, R.M. Fygenson, B.I. Shraiman, Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. USA 109(3), 739–744 (2012)Google Scholar
  118. 118.
    J. Ranft, M. Basan, J. Elgeti, J.F. Joanny, J. Prost, F. Juelicher, Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. USA 107(49), 20863–20868 (2010)Google Scholar
  119. 119.
    K.A. Rejniak, An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J. Theor. Biol. 247, 186–204 (2007)MathSciNetGoogle Scholar
  120. 120.
    L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De Maria, Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123), 111–115 (2007)Google Scholar
  121. 121.
    E.K. Rodriguez, A. Hoger, A.D. McCulloch, Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)Google Scholar
  122. 122.
    T. Roose, P.A. Netti, L.L. Munn, Y. Boucher, R.K. Jain, Solid stress generated by spheroid growth estimated using a linear poroelasticity model small star, filled. Microvasc. Res. 66(3), 204–212 (2003)Google Scholar
  123. 123.
    T. Roose, S.J. Chapman, P.K. Maini, Mathematical models of avascular tumor growth. SIAM Rev. 49, 179–208 (2007)MathSciNetzbMATHGoogle Scholar
  124. 124.
    M. Shackleton, E. Quintana, E.R. Fearon, S.J. Morrison, Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138(5), 822–829 (2009)Google Scholar
  125. 125.
    M.A. Shannon, B. Rubinsky, The effect of tumor growth on the stress distribution in tissue. Adv. Biol. Mass Transfer HTD ASME 231, 35–39 (1992)Google Scholar
  126. 126.
    H.M. Shaw, W.H. McCarthy, Small-diameter malignant melanoma: a common diagnosis in new South Wales, Australia. J. Am. A Dermatol. 27, 679–682 (1992)Google Scholar
  127. 127.
    S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, T. Bayani, J. Hide, R. Henkelman, M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells. Nature 432(7015), 396–340 (2004)Google Scholar
  128. 128.
    G.G. Steel, L.F. Lamerton, The growth rate of human tumours. Br. J. Cancer 20(1), 74–86 (1966)Google Scholar
  129. 129.
    M.S. Steinberg, Differential adhesion in morphogenesis: a modern view. Curr. Opin. Genet. Dev. 17(4), 281–286 (2007)Google Scholar
  130. 130.
    M. Stohrer, Y. Boucher, M. Stangassinger, R.K. Jain, Oncotic pressure in solid tumors is elevated. Cancer Res. 60(15), 4251–4255 (2000)Google Scholar
  131. 131.
    M. Stücker, A. Struk, P. Altmeyer, M. Herde, H. Baumgärtl, D.W. Lübbers, The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J. Physiol. 538, 985–994 (2002)Google Scholar
  132. 132.
    W.C. Summers, Dynamics of tumor growth: a mathematical model. Growth 30(3), 333–338 (1966)Google Scholar
  133. 133.
    R.M. Sutherland, Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849), 177–184 (1988)Google Scholar
  134. 134.
    R.M. Sutherland, R.E. Durand, Hypoxic cells in an in vitro tumour model. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 23(3), 235–246 (1973)Google Scholar
  135. 135.
    R.M. Sutherland, J.A. McCredie, W.R. Inch, Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl. Cancer Inst. 46(1), 113–120 (1971)Google Scholar
  136. 136.
    W.R. Tinga, A.G. Voss, D.F. Blossey, Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44, 3897–3902 (1973)Google Scholar
  137. 137.
    R.H. Thomlison, L.H. Gray, The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9(4), 539–549 (1955)Google Scholar
  138. 138.
    P.L. Townes, J. Holfreter, Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1995)Google Scholar
  139. 139.
    C. Truesdell, Rational Thermodynamics (Springer, New York, 1984)zbMATHGoogle Scholar
  140. 140.
    C. Truesdell, R. Toupin, The classical field theory, in Handbuch der Physik (Springer, Berlin, 1960)Google Scholar
  141. 141.
    R. Vandiver, A. Goriely, Differential growth and residual stress in cylindrical elastic structures. Philos. Transact. A Math. Phys. Eng. Sci. 367(1902), 3607–3630 (2009)MathSciNetzbMATHGoogle Scholar
  142. 142.
    K.Y. Volokh, Stresses in growing soft tissues. Acta Biomater. 2(5), 493–504 (2006)Google Scholar
  143. 143.
    R.A. Weinberg, One Renegade Cell: How Cancer Begins (Phoenix, London, 2009)Google Scholar
  144. 144.
    M.A. Weinstock, Cutaneous melanoma: public health approach to early detection Dermatol. Ther. 19, 26–31 (2006)Google Scholar
  145. 145.
    R. Wette, E.Y. Rodin, B. Katz, Stochastic processes for solid tumor kinetics i. Surface-regulated growth. Math. Biosci. 19, 231–255 (1974)zbMATHGoogle Scholar
  146. 146.
    R. Wette, B. Katz, E.Y. Rodin, Stochastic processes for solid tumor kinetics ii. Diffusion-regulated growth. Math. Biosci. 21, 311–338 (1974)zbMATHGoogle Scholar
  147. 147.
    H. Wiig, R.K. Reed, O. Tenstad, Interstitial fluid pressure, composition of interstitium, and interstitial exclusion of albumin in hypothyroid rats. Am. J. Physiol. Heart Circ. Physiol. 278(5), H1627–H1639 (2000)Google Scholar
  148. 148.
    B.S. Winters, S.R. Shepard, R.A. Foty, Biophysical measurement of brain tumor cohesion. Int. J. Cancer 114(3), 371–379 (2005)Google Scholar
  149. 149.
    S.M. Wise, J.S. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth:model and numerical method. J. Theor. Biol. 253(3), 524–543 (2008)MathSciNetGoogle Scholar
  150. 150.
    J. Xu, K. Gupta, W.V. Stoecker, Y. Krishnamurthy, H.S. Rabinovitz, A. Bangert, D. Calcara, M. Oliviero, J.M. Malters, R. Drugge, R.J. Stanley, R.H. Moss, M.E. Celebi, Analysis of globule types in malignant melanoma. Arch. Dermatol. 145(11), 1245–1251 (2009)Google Scholar
  151. 151.
    H. Yabu, T. Higuchi, M. Shimomura, Unique phase-separation structures of block-copolymer nanoparticles. Adv. Mater. 17, 2062–2065 (2005)Google Scholar
  152. 152.
    X. Zheng, S.M. Wise, V. Cristini, Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67(2), 211–259 (2005)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique StatistiqueEcole Normale Supérieure, UPMC Univ Paris 06, Université Paris Diderot, CNRSParisFrance
  2. 2.Institut Universitaire de Cancérologie, Faculté de médecineUniversité Pierre et Marie Curie-Paris 6ParisFrance

Personalised recommendations