Conservation Laws in Cancer Modeling

  • Antonio FasanoEmail author
  • Alessandro Bertuzzi
  • Carmela Sinisgalli
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


We review mathematical models of tumor growth based on conservation laws in the full system of cells and interstitial liquid. First we deal with tumor cords evolving in axisymmetric geometry, where cells motion is simply passive and compatible with the saturation condition. The model is characterized by the presence of free boundaries with constraints driving the free boundary conditions, which in our opinion are particularly important, especially in the presence of treatments. Then a tumor spheroid is considered in the framework of the so-called two-fluid scheme. In a multicellular spheroid, on the appearance of a fully degraded necrotic core, the analysis of mechanical stresses becomes necessary to determine the motion via momentum balance, requiring the specification of the constitutive law for the “cell fluid.” We have chosen a Bingham-type law that presents considerable difficulties because of the presence of a yield stress, particularly with reference to the determination of an asymptotic configuration. Finally, we report some recent PDE-based models addressing complex processes in multicomponent tumors, more oriented to clinical practice.


Conservation laws Cancer modeling Tumor cords Tumor spheroids Multicomponent tumors 


  1. 1.
    T. Alarcón, H.M. Byrne, P.K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)CrossRefGoogle Scholar
  2. 2.
    D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours. Biomech. Model. MechanoBiol. 8, 397–413 (2009)CrossRefGoogle Scholar
  3. 3.
    A.R.A. Anderson, M.A.J. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–999 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    R.P. Araujo, D.L.S. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Astanin, A. Tosin, Mathematical model of tumour cord growth along the source of nutrient. Math. Model. Nat. Phenom. 2, 153–177 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    I.V. Basov, V.V. Shelukhin, Generalized solutions to the equations of compressible Bingham flows. Z. Angew. Math. Mech. 79, 185–192 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. Bellomo, N.K. Li, P.K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives. Math. Mod. Meth. Appl. Sci. 18, 593–646 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Bertuzzi, A. d’Onofrio, A. Fasano, A. Gandolfi, Regression and regrowth of tumour cords following single-dose anticancer treatment. Bull. Math. Biol. 65, 903–931 (2003)Google Scholar
  9. 9.
    A. Bertuzzi, A. Fasano, A. Gandolfi, A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents. SIAM J. Math. Anal. 36, 882–915 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Bertuzzi, A. Fasano, A. Gandolfi, A mathematical model for tumor cords incorporating the flow of interstitial fluid. Math. Mod. Meth. Appl. Sci. 15, 1735–1777 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Bertuzzi, A. Fasano, L. Filidoro, A. Gandolfi, C. Sinisgalli, Dynamics of tumour cords following changes in oxygen availability: a model including a delayed exit from quiescence. Math. Comput. Model. 41, 1119–1135 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Interstitial pressure and extracellular fluid motion in tumour cords. Math. Biosci. Eng. 2, 445–460 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. J. Theor. Biol. 244, 388–399 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Reoxygenation and split-dose response to radiation in a tumour model with Krogh-type vascular geometry. Bull. Math. Biol. 70, 992–1012 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Modelling the evolution of a tumoural multicellular spheroid as a two-fluid Bingham-like system. Math. Mod. Meth. Appl. Sci. 23, 2561–2602 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Bertuzzi, C. Bruni, F. Papa, C. Sinisgalli, Optimal solution for a cancer radiotherapy problem. J. Math. Biol. 66, 311–349 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Brú, S. Albertos, J.L. Subiza, J. López García-Asenjo, I. Brú, The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003)CrossRefGoogle Scholar
  18. 18.
    H.M. Byrne, J.R. King, D.L.S. McElwain, L. Preziosi, A two-phase model of solid tumour growth. Appl. Math. Lett. 16, 567–573 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H.M. Byrne, L. Preziosi, Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)CrossRefzbMATHGoogle Scholar
  20. 20.
    M.A. Chaplain, S.R. McDougall, A.R. Anderson, Mathematical modeling of tumor-induced angiogenesis. Annu. Rev. Biomed. Eng. 8, 233–257 (2006)CrossRefGoogle Scholar
  21. 21.
    D. Chen, J.M. Roda, C.B. Marsh, T.D. Eubank, A. Friedman, Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull. Math. Biol. 74, 2752–2777 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theor. Biol. 264, 253–265 (2010)Google Scholar
  23. 23.
    T. Eubank, R.D. Roberts, M. Khan, J. Curry, G.J. Nuovo, P. Kuppusamyl, C. Marsh, Granulocyte macrophage Colony-Stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res. 69, 2133–2140 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Fasano, Glucose metabolism in multicellular spheroids, ATP production and effects of acidity, in New Challenges for Cancer Systems Biomedicine, ed. by A. d’Onofrio, Z. Agur, P. Cerrai, A. Gandolfi (Springer, to appear)Google Scholar
  25. 25.
    A. Fasano, A. Gandolfi, The steady state of multicellular tumour spheroids: a modelling challenge, in Mathematical Methods and Models in Biomedicine, ed. by U. Ledzewicz, H. Schaettler, A. Friedman, E. Kashdan (Springer, New York, 2012), pp. 161–179Google Scholar
  26. 26.
    A. Fasano, A. Bertuzzi, A. Gandolfi, Mathematical modelling of tumour growth and treatment. In: Complex Systems in Biomedicine, ed. by A. Quarteroni, L. Formaggia, A. Veneziani (Springer, Italia, Milano, 2006), pp. 71–108CrossRefGoogle Scholar
  27. 27.
    A. Fasano, M.A. Herrero, M. Rocha Rodrigo, Slow and fast invasion waves in a model of acid-mediated tumour growth. Math. Biosci. 220, 45–56 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. Fasano, M. Gabrielli, A. Gandolfi, The energy balance in stationary multicellular spheroids. Far East J. Math. Sci. 39, 105–128 (2010)MathSciNetzbMATHGoogle Scholar
  29. 29.
    A. Fasano, M. Gabrielli, A. Gandolfi, Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 8, 239–252 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. Fasano, M. Gabrielli, A. Gandolfi, Erratum to: investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Math. Biosci. Eng. 9, 697 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    J. Folkman, M. Hochberg, Cell-regulation of growth in three dimensions. J. Exp. Med. 138, 745–753 (1973)CrossRefGoogle Scholar
  32. 32.
    J. Folkman, E. Merler, C. Abernathy, G. Williams, Isolation of a tumor fraction responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971)CrossRefGoogle Scholar
  33. 33.
    J.P. Freyer, R.M. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 46, 3504–3512 (1986)Google Scholar
  34. 34.
    A. Friedman, A hierarchy of cancer models and their mathematical challenges. Discrete Contin. Dyn. Syst. B 4, 147–159 (2004)CrossRefzbMATHGoogle Scholar
  35. 35.
    R.A. Gatenby, E.T. Gawlinski, A reaction-diffusion model for cancer invasion. Cancer Res. 56, 5745–5753 (1996)Google Scholar
  36. 36.
    J.B. Gillen, E.A. Gaffney, N.K. Martin, P.K. Maini, A general reaction-diffusion model of acidity in cancer invasion. J. Math. Biol. (2013)Google Scholar
  37. 37.
    S. Goel, D.G. Duda, L. Xu, L.L. Munn, Y. Boucher, D. Fukumura, R.K. Jain, Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011)CrossRefGoogle Scholar
  38. 38.
    P. Greenspan, Models for the growth of a solid tumour by diffusion. Stud. Appl. Math. 51, 317–340 (1972)zbMATHGoogle Scholar
  39. 39.
    P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)Google Scholar
  40. 40.
    M.A. Herrero, Reaction-diffusion systems: a mathematical biology approach, in Cancer Modelling and Simulation, ed. by L. Preziosi (Chapman and Hall, Boca Raton, 2003), pp. 367–420Google Scholar
  41. 41.
    T. Hillen, K.J. Painter, A user’s guide to pde models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    T. Hillen, H. Enderling, P. Hahnfeld, The tumor growth paradox and immune system-mediated selection for cancer stem cells. Bull. Math. Biol. 75, 161–184 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    P. Hinow, P. Gerlee, L.J. McCawley, V. Quaranta, M. Ciobanu, J.M. Graham, B.P. Ayati, J. Claridge, K.R. Swanson, M. Loveless, A.R.A. Anderson, A spatial model of tumor-host interaction: application of chemotherapy. Math. Biosci. Eng. 6, 521–546 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    D.G. Hirst, J. Denekamp, Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42 (1979)Google Scholar
  45. 45.
    A. Iordan, A. Duperray, C. Verdier, A fractal approach to the rheology of concentrated cell suspensions. Phys. Rev. E 77, 011911 (2008)CrossRefGoogle Scholar
  46. 46.
    R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001)CrossRefGoogle Scholar
  47. 47.
    H.V. Jain, A. Friedman, Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete Contin. Dyn. Syst. B 18, 945–967 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    K.A. Landman, C.P. Please, Tumour dynamics and necrosis: surface tension and stability. IMA J. Math. Appl. Med. Biol. 18, 131–158 (2001)CrossRefzbMATHGoogle Scholar
  49. 49.
    U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–77 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    H.A. Levine, B.D. Sleeman, M. Nilsen-Hamilton, Mathematical modeling of the onset of capillary formation initiating angiogenesis. J. Math. Biol. 42, 195–238 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    J.S. Lowengrub, H.B. Frieboes, F. Jin, Y.L. Chuang, X. Li, P. Macklin, S.M. Wise, V. Cristini, Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, 1–91 (2010)MathSciNetCrossRefGoogle Scholar
  52. 52.
    J.V. Moore, H.A. Hopkins, W.B. Looney, Dynamic histology of a rat hepatoma and the response to 5-fluorouracil. Cell Tissue Kinet. 13, 53–63 (1980)Google Scholar
  53. 53.
    J.V. Moore, P.S. Hasleton, C.H. Buckley, Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413 (1985)CrossRefGoogle Scholar
  54. 54.
    M. Neeman, K.A. Jarrett, L.O. Sillerud, J.P. Freyer, Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Cancer Res. 51, 4072–4079 (1991)Google Scholar
  55. 55.
    P. Panorchan, M.S. Thompson, K.J. Davis, Y. Tseng, K. Konstantopoulos, D. Wirtz, Single-molecule analysis of cadherin-mediated cell–cell adhesion. J. Cell Sci. 119, 66–74 (2006)CrossRefGoogle Scholar
  56. 56.
    V.M. Perez-Garcia, G.F. Calvo, J. Belmonte-Beitia, D. Diego, L. Perez-Romasanta, Bright solitary waves in malignant gliomas. Phys. Rev. E 84, 1–6 (2011)CrossRefGoogle Scholar
  57. 57.
    L. Preziosi, G. Vitale, A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Mod. Meth. Appl. Sci. 21, 1901–1932 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    K.R. Rajagopal, L. Tao, Mechanics of Mixtures (World Scientific, Singapore, 1995)zbMATHGoogle Scholar
  59. 59.
    D. Ribatti, A. Vacca, M. Presta, The discovery of angiogenic factors: a historical review. General Pharmacol. 35, 227–231 (2002)CrossRefGoogle Scholar
  60. 60.
    J.M. Roda, L.A. Summer, R. Evans, G.S. Philips, C.B. Marsh, T.D. Eubank, Hypoxia-inducible factor-2α regulates GM-CSF-derived soluble vascular endothelial growth factor receptor 1 production from macrophages and inhibits tumor growth and angiogenesis. J. Immunol. 187, 1970–1976 (2011)CrossRefGoogle Scholar
  61. 61.
    J.M. Roda, Y. Wang, L. Sumner, G. Phillips, T.D. Eubank, C. Marsh, Stabilization of HIF-2α induces SVEGFR-1 production from Tumor-associated macrophages and enhances the Anti-tumor effects of GM-CSF in murine melanoma model. J. Immunol. 189, 3168–3177 (2012)CrossRefGoogle Scholar
  62. 62.
    A. Stephanou, S.R. McDougall, A.R.A. Anderson, M.A.J. Chaplain, Mathematical modelling of flow in 2d and 3d vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model. 41, 1137–1156 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    K.R. Swanson, C. Bridge, J.D. Murray, E.C. Alvord Jr., Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003)CrossRefGoogle Scholar
  64. 64.
    K.R. Swanson, R. Rockne, J. Claridge, M.A. Chaplain, E.C. Alvord Jr., A.R.A. Anderson, Quantifying the role of angiogenesis in malignant progression of gliomas: In silico modeling integrates imaging and histology. Cancer Res. 71, 7366–7375 (2011)CrossRefGoogle Scholar
  65. 65.
    I.F. Tannock, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968)CrossRefGoogle Scholar
  66. 66.
    Y. Yang, L. Xing, Optimization of radiotherapy dose-time fractionation with consideration of tumor specific biology. Med. Phys. 32, 3666–3677 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Antonio Fasano
    • 1
    • 2
    Email author
  • Alessandro Bertuzzi
    • 2
  • Carmela Sinisgalli
    • 2
  1. 1.Dipartimento di Matematica “U. Dini”Universita’ di FirenzeFirenzeItaly
  2. 2.Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNRRomaItaly

Personalised recommendations