Advertisement

Tumor Microenvironment and Anticancer Therapies: An Optimal Control Approach

  • Urszula LedzewiczEmail author
  • Heinz Schättler
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

In this paper, results about the structure of cancer treatment protocols that can be inferred from an analysis of mathematical models with the methods and tools of optimal control are reviewed. For homogeneous tumor populations of chemotherapeutically sensitive cells, optimal controls are bang-bang corresponding to the medical paradigm of maximum tolerated doses (MTD). But as more aspects of the tumor microenvironment are taken into account, such as heterogeneity of the tumor cell population, tumor angiogenesis and tumor-immune system interactions, singular controls which administer agents at specific time-varying reduced dose rates become optimal and give an indication of what might be the biologically optimal dose (BOD).

Keywords

Optimal control Cancer chemotherapy Tumor microenvironment Antiangiogenic treatments Tumor-immune system interactions 

Notes

Acknowledgements

This material is based upon work supported by the National Science Foundation under collaborative research Grants Nos. DMS 1311729/1311733. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    N. André, L. Padovani, E. Pasquier, Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy?. Fut. Oncol. 7(3), 385–394 (2011)CrossRefGoogle Scholar
  2. 2.
    T. Boehm, J. Folkman, T. Browder, M.S. O’Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407 (1997)CrossRefGoogle Scholar
  3. 3.
    B. Bonnard,, M. Chyba, Singular trajectories and their role in control theory. Mathématiques & Applications, vol. 40 (Springer, Paris 2003)Google Scholar
  4. 4.
    A. Bressan, A. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences (2007)Google Scholar
  5. 5.
    S. Davis, G.D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis. Cur. Top. Microbio. Immun. 237, 173–185 (1999)Google Scholar
  6. 6.
    M. Eisen, Mathematical Models in Cell Biology and Cancer Chemotherapy, Lecture Notes in Biomathematics, vol. 30 (Springer, NewYork 1979)Google Scholar
  7. 7.
    A. Ergun, K. Camphausen, L.M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, Bull. Math. Biol. 65, 407–424 (2003)CrossRefGoogle Scholar
  8. 8.
    J. Folkman, Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 295, 1182–1196 (1971)Google Scholar
  9. 9.
    J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors, Ann. Surg. 175, 409–416 (1972)CrossRefGoogle Scholar
  10. 10.
    J. Folkman, M. Klagsburn, Angiogenic factors. Science 235, 442–447 (1987)Google Scholar
  11. 11.
    U. Forys, Y. Keifetz, Y. Kogan, Critical-point analysis for three-variable cancer angiogenesis models. Math. Biosci. Eng. 2, 511–525 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    R.A. Gatenby, A.S. Silva, R.J. Gillies, B.R. Frieden, Adaptive therapy. Canc. Res. 69, 4894–4903 (2009)Google Scholar
  13. 13.
    J.H. Goldie, Drug resistance in cancer: a perspective. Canc. Meta. Rev. 20, 63–68 (2001)CrossRefGoogle Scholar
  14. 14.
    J.H. Goldie, A. Coldman, Drug Resistance in Cancer (Cambridge University Press, Cambridge 1998)CrossRefGoogle Scholar
  15. 15.
    P. Hahnfeldt, L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations. Radiat. Res. 150, 681–687 (1998)CrossRefGoogle Scholar
  16. 16.
    P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Can. Res. 59, 4770–4775 (1999)Google Scholar
  17. 17.
    P. Hahnfeldt, J. Folkman, L. Hlatky, Minimizing long-term burden: the logic for metronomic chemotherapy dosing and its angiogenic basis. J. Theo. Biol. 220, 545–554 (2003)CrossRefGoogle Scholar
  18. 18.
    D. Hanahan, G. Bergers, E. Bergsland, Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 105, 1045–1047 (2000)CrossRefGoogle Scholar
  19. 19.
    R.K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med., 7, 987–989 (2001)CrossRefGoogle Scholar
  20. 20.
    R.K. Jain, L.L. Munn, Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents, Princ. Pract. Oncol. 21, 1–7 (2007)Google Scholar
  21. 21.
    B. Kamen, E. Rubin, J. Aisner, E. Glatstein, High-time chemotherapy or high time for low dose? J. Clin. Oncol. 18, Editorial, 2935–2937 (2000)Google Scholar
  22. 22.
    R.S. Kerbel, Tumor angiogenesis: past, present and near future, Carcinogensis, 21, 505–515 (2000)CrossRefGoogle Scholar
  23. 23.
    T.J. Kindt, B.A. Osborne, R.A. Goldsby, Kuby Immunology (W.H. Freeman, New York 2006)Google Scholar
  24. 24.
    M. Kimmel, A. Swierniak, Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance, in Tutorials in Mathematical Biosciences III: Cell Cycle, Proliferation, and Cancer. Lecture Notes in Mathematics, vol. 1872 (Springer, Newyork, 2006), pp. 185–221Google Scholar
  25. 25.
    M. Klagsburn, S. Soker, VEGF/VPF: the angiogenesis factor found?. Curr. Biol. 3, 699–702, (1993)CrossRefGoogle Scholar
  26. 26.
    G. Klement, S. Baruchel,, Rak, J., Man, S., Clark, K., Hicklin, D.J., Bohlen, P., Kerbel, R.S.: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, J. Clin. Invest. 105, R15–R24 (2000)Google Scholar
  27. 27.
    V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bul. Math. Biol. 56, 295–321 (1994)Google Scholar
  28. 28.
    U. Ledzewicz, K. Bratton, H. Schättler, A 3-compartment model for chemotherapy of heterogeneous tumor populations. Acta Appl. Matem. (2014) doi:  10.1007/s10440-014-9952-6 Google Scholar
  29. 29.
    U. Ledzewicz, M.S. Faraji Mosalman, H. Schättler, Optimal controls for a mathematical model of tumor-immune interactions under targeted chemotherapy with immune boost, Discr. Cont. Dyn. Syst. Ser. B 18, 1031–1051 (2013)CrossRefzbMATHGoogle Scholar
  30. 30.
    U. Ledzewicz, A. d’Onofrio, H. Schättler, Tumor development under combination treatments with anti-angiogenic therapies. in Mathematical Methods and Models in Biomedicine (Springer, NewYork, 2012), pp. 311–337Google Scholar
  31. 31.
    U. Ledzewicz, J. Marriott, H. Maurer, H. Schättler, Realizable protocols for optimal administration of drugs in mathematical models for novel cancer treatments, Math. Med. Biol. 27, 157–179, (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    U. Ledzewicz, M. Naghnaeian, H. Schättler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. J. Math. Biol. 64, 557–577 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    U. Ledzewicz, H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Th. Appl. 114, 609–637 (2002)CrossRefzbMATHGoogle Scholar
  34. 34.
    U. Ledzewicz, H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10, 183–206 (2002)CrossRefzbMATHGoogle Scholar
  35. 35.
    U. Ledzewicz, H. Schättler, Optimal control for a bilinear model with recruiting agent in cancer chemotherapy, Proc. of the 42nd IEEE Conference on Decision and Control (CDC), Maui, Hawaii, 2762–2767 (2003)Google Scholar
  36. 36.
    U. Ledzewicz, H. Schättler, The influence of PK/PD on the structure of optimal control in cancer chemotherapy models, Math. Biosci. Engr. 2, 561–578 (2005)CrossRefzbMATHGoogle Scholar
  37. 37.
    U. Ledzewicz, H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discr. Cont. Dyn. Syst. Ser. B, 6, 129–150 (2006)zbMATHGoogle Scholar
  38. 38.
    U. Ledzewicz, H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Contr. Optim. 46, 1052–1079 (2007)CrossRefzbMATHGoogle Scholar
  39. 39.
    U. Ledzewicz, H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti-angiogenesis. J. of Theo. Biol. 252, 295–312, (2008)CrossRefGoogle Scholar
  40. 40.
    U. Ledzewicz, H. Schättler, Multi-input optimal control problems for combined tumor anti-angiogenic and radiotherapy treatments. J. of Optim. Th. Appl. 153, 195–224 (2012)CrossRefzbMATHGoogle Scholar
  41. 41.
    U. Ledzewicz, H. Schättler, M. Reisi Gahrooi, S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for combination cancer chemotherapy. Math. Biosci. Engr. 10, 803–819 (2013)CrossRefzbMATHGoogle Scholar
  42. 42.
    L.A. Loeb, A mutator phenotype in cancer. Canc. Res. 61, 3230–3239 (2001)Google Scholar
  43. 43.
    R. Martin, K.L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy (World Scientific Publishers, Singapore 1994)zbMATHGoogle Scholar
  44. 44.
    L. Norton, R. Simon, The Norton-Simon hypothesis revisited. Canc. Treat. Rep. 70, 163–169 (1986)Google Scholar
  45. 45.
    A. d’Onofrio, A general framework for modelling tumor-immune system competition and immunotherapy: Mathematical analysis and biomedial inferences. Phys. D 208, 202–235, (2005)Google Scholar
  46. 46.
    A. d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76, 031920 (2007)Google Scholar
  47. 47.
    A. d’Onofrio, A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al., Math. Biosci. 191, 159–184 (2004)Google Scholar
  48. 48.
    A. d’Onofrio, A. Gandolfi, The response to antiangiogenic anticancer drugs that inhibit endothelial cell proliferation. Appl. Math. and Comp. 181, 1155–1162 (2006)Google Scholar
  49. 49.
    A. d’Onofrio, A. Gandolfi, A family of models of angiogenesis and anti-angiogenesis anti-cancer therapy. Math. Med. Biol., 26, 63–95 (2009)Google Scholar
  50. 50.
    A. d’Onofrio, A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J. Theo. Biol. 264, 253–265, (2010)Google Scholar
  51. 51.
    A. d’Onofrio, A. Gandolfi, A. Rocca, The dynamics of tumour-vasculature interaction suggests low-dose, time-dense antiangiogenic schedulings. Cell Prolif., 42, 317–329, (2009)Google Scholar
  52. 52.
    A. d’Onofrio, U. Ledzewicz, H. Maurer, H. Schättler, On optimal delivery of combination therapy for tumors. Math. Biosci., 222, 13–26 (2009)Google Scholar
  53. 53.
    A. d’Onofrio, U. Ledzewicz, H. Schättler, On the dynamics of tumor immune system interactions and combined chemo- and immunotherapy, in: New Challenges for Cancer Systems Biomedicine eds. by A. d’Onofrio, P. Cerrai, A Gandolfi, vol. 1 (SIMAI Springer series, 2012). pp. 249–266Google Scholar
  54. 54.
    D. Pardoll, Does the immune system see tumors as foreign or self? Ann. Rev. Immun. 21, 807–839 (2003)CrossRefGoogle Scholar
  55. 55.
    E. Pasquier, U. Ledzewicz, Perspective on “More is not necessarily better”: Metronomic Chemotherapy. Newslet. Soc. Math. Biol. 26(2), 9–10, (2013)Google Scholar
  56. 56.
    E. Pasquier, M. Kavallaris, N. André, Metronomic chemotherapy: new rationale for new directions. Nat. Rev. | Clin. Onc. 7, 455–465 (2010)Google Scholar
  57. 57.
    K. Pietras, D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J. Clin. Onc. 23, 939–952 (2005)CrossRefGoogle Scholar
  58. 58.
    J. Poleszczuk, U. Forys, Derivation of the Hahnfeldt et al. model (1999) revisited, Proceedings of the 16th Nat. Conf. on Applications of Mathematics in Biology and Medicine, Krynica, Poland 87–92 (2010)Google Scholar
  59. 59.
    L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mishchenko, The Mathematical Theory of Optimal Processes (MacMillan, New York 1964)zbMATHGoogle Scholar
  60. 60.
    H. Schättler, U. Ledzewicz, B. Cardwell, Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis. Math. Biosci. Engr. 8, 355–369 (2011)CrossRefzbMATHGoogle Scholar
  61. 61.
    H. Schättler, U. Ledzewicz: Geometric Optimal Control (Springer, NewYork 2012)CrossRefzbMATHGoogle Scholar
  62. 62.
    H. Schättler, U. Ledzewicz, S. Mahmoudian Dehkordi, M. Reisi Gahrooi, A geometric analysis of bang-bang extremals in optimal control problems for combination cancer chemotherapy, Proc. of the 51st IEEE Conf. on Decision and Control, Maui, Hawaii, 7691–7696, (2012)Google Scholar
  63. 63.
    N.V. Stepanova, Course of the immune reaction during the development of a malignant tumour. Biophys. 24, 917–923 (1980)Google Scholar
  64. 64.
    G.W. Swan, Role of optimal control in cancer chemotherapy. Math. Biosci., 101, 237–284 (1990)CrossRefzbMATHGoogle Scholar
  65. 65.
    J.B. Swann, M.J. Smyth, Immune surveillance of tumors. J. Clin. Invest. 117 1137–1146, (2007)CrossRefGoogle Scholar
  66. 66.
    A. Swierniak, Optimal treatment protocols in leukemia-modelling the proliferation cycle, Proc. of the 12th IMACS World Congress, Paris, vol. 4, 170–172 (1988)Google Scholar
  67. 67.
    A. Swierniak, Cell cycle as an object of control, J. Biol. Syst. 3, 41–54 (1995)CrossRefGoogle Scholar
  68. 68.
    A. Swierniak, Direct and indirect control of cancer populations. Bul. Pol. Acad. Sci. Techn. Sci. 56, 367–378 (2008)Google Scholar
  69. 69.
    A. Swierniak, U. Ledzewicz, H. Schättler, Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Appl. Math. Comp. Sci. 13, 357–368 (2003)zbMATHGoogle Scholar
  70. 70.
    A. Swierniak, A. d’Onofrio, A. Gandolfi, Optimal control problems related to tumor angiogenesis. Proc. IEEE-IECON’2006, 667–681 (2006)Google Scholar
  71. 71.
    A. Swierniak, J. Smieja, Cancer chemotherapy optimization under evolving drug resistance. Nonlin. Ana. 47, 375–386 (2000)CrossRefMathSciNetGoogle Scholar
  72. 72.
    H.P. de Vladar, J.A. González, Dynamic response of cancer under the influence of immunological activity and therapy. J. Theo. Biol. 227, 335–348 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsSouthern Illinois UniversityEdwardsvilleUSA
  2. 2.Department of Electrical and Systems EngineeringWashington UniversitySt. LouisUSA

Personalised recommendations