Modeling Spatial Effects in Carcinogenesis: Stochastic and Deterministic Reaction-Diffusion

  • Roberto Bertolusso
  • Marek KimmelEmail author
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


This paper is a review including some original elements of a family of reaction-diffusion models of carcinogenesis exhibiting diffusion-driven (Turing) instability (DDI), but consisting of a single reaction-diffusion equation coupled with a system of ordinary differential equations (ODE). Such models are very different from the classical Turing-type models in that they exhibit qualitatively new patterns of behavior of solutions, including, in some cases, a strong dependence of the emerging pattern on initial conditions and quasi-stability followed by rapid growth of solutions, which may take the form of isolated spikes, corresponding to discrete foci of proliferation. However, the process of diffusion of growth factor molecules is by its nature a stochastic random walk. An interesting question emerges to what extent the dynamics of the deterministic diffusion model approximates the stochastic process generated by the model. We address this question using simulations with a software tool called sbioPN (spatial biological Petri Nets). The picture emerging suggests that some of the generic features of the deterministic system, such as spike formation, and dependence of the number of spikes on diffusivity, are preserved. However, new elements, such as spike competition and appearance of spikes at isolated random locations, are also present. We also discuss the relevance of the model and particularly the cell cooperativity hypothesis, underlying transition to the DDI.


Cancer modelling Deterministic Stochastic Reaction-diffusion equations Pattern formation Spike solutions 


  1. 1.
    H. Awaya, Y. Takeshima, O. Furonaka, N. Kohno, K. Inai, Gene amplification and protein expression of EGFR and HER2 by chromogenic in situ hybridisation and immunohistochemistry in atypical adenomatous hyperplasia and adenocarcinoma of the lung. J. Clin. Pathol. 58(10), 1076–1080 (2005)CrossRefGoogle Scholar
  2. 2.
    R. Axelrod, D.E. Axelrod, K.J. Pienta, Evolution of cooperation among tumor cells. Proc. Natl. Acad. Sci. 103(36), 13474–13479 (2006)CrossRefGoogle Scholar
  3. 3.
    E. Ben-Jacob, D.S. Coffey, H. Levine, Bacterial survival strategies suggest rethinking cancer cooperativity. Trends Microbiol. 20(9), 403–410 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Bertolusso, Computational models of signaling processes in cells with applications: influence of stochastic and spatial effects. Ph.D. thesis, Rice University, Houston, TX, 2011Google Scholar
  5. 5.
    R. Bertolusso, M. Kimmel, Modeling spatial effects in early carcinogenesis: stochastic versus deterministic reaction-diffusion systems. Math. Model. Nat. Phenom. 7(01), 245–260 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B.J. Blyth, P.J. Sykes, Radiation-induced bystander effects: what are they, and how relevant are they to human radiation exposures? Rad. Res. 176(2), 139–157 (2011)CrossRefGoogle Scholar
  7. 7.
    B.J.M. Braakhuis, M.P. Tabor, J.A. Kummer, C.R. Leemans, R.H. Brakenhoff, A genetic explanation of Slaughter’s concept of field cancerization evidence and clinical implications. Cancer Res. 63(8), 1727–1730 (2003)Google Scholar
  8. 8.
    J. Califano, P. van der Riet, W. Westra, H. Nawroz, G.Clayman, S. Piantadosi, R. Corio et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 56(11), 2488–2492 (1996)Google Scholar
  9. 9.
    R. Erban, J. Chapman, P. Maini, A practical guide to stochastic simulations of reaction-diffusion processes. arXiv preprint arXiv:0704.1908 (2007)Google Scholar
  10. 10.
    J. Foo, K. Leder, M. D. Ryser, Multifocality and recurrence risk: a quantitative model of field cancerization. J. Theor. Biol. 355, 170–184 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Hillen, A classifycation of spikes and plateaus. SIAM Rev. 49(1), 35–51 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    B. Hu, E. Castillo, L. Harewood, P. Ostano, A. Reymond, R. Dummer, W. Raffoul, W. Hoetzenecker, G.F.L. Hofbauer, G.P. Dotto, Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 149(6), 1207–1220 (2012)CrossRefGoogle Scholar
  13. 13.
    S.A. Isaacson, C.S. Peskin, Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Sci. Comput. 28(1), 47–74 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    T. Kawai, S. Hiroi, K. Nakanishi, A.K. Meeker, Telomere length and telomerase expression in atypical adenomatous hyperplasia and small bronchioloalveolar carcinoma of the lung. Am. J. Clin. Pathol. 127(2), 254–262 (2007)CrossRefGoogle Scholar
  15. 15.
    K.M. Kerr, Pulmonary preinvasive neoplasia. J. Clin. Pathol. 54(4), 257–271 (2001)CrossRefGoogle Scholar
  16. 16.
    K. Kishi, S. Homma, A. Kurosaki, S. Tanaka, H. Matsushita, K. Nakata, Multiple atypical adenomatous hyperplasia with synchronous multiple primary bronchioloalveolar carcinomas. Int. Med. 41(6), 474–477 (2002)CrossRefGoogle Scholar
  17. 17.
    H. Kitagawa, A. Goto, T. Niki, M. Hironaka, J. Nakajima, M. Fukayama, Lung adenocarcinoma associated with atypical adenomatous hyperplasia. A clinicopathological study with special reference to smoking and cancer multiplicity. Pathol. Int. 53(12), 823–827 (2003)Google Scholar
  18. 18.
    T. Kolokolnikov, J. Wei, M. Winter, Existence and stability analysis of spiky solutions for the Gierer-Meinhardt system with large reaction rates. Phys. D Nonlinear Phenom. 238(16), 1695–1710 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Lipkin, Phase 1 and phase 2 proliferative lesions of colonic epithelial cells in diseases leading to colonic cancer. Cancer 34(S3), 878–888 (1974)CrossRefGoogle Scholar
  20. 20.
    J.P. Lockhart-Mummery, C. Dukes, The precancerous changes in the rectum and colon. Surg. Gynecol. Obstet. 46(5), 591–596 (1928)Google Scholar
  21. 21.
    A. Marciniak-Czochra, M. Kimmel, Dynamics of growth and signaling along linear and surface structures in very early tumors. Comput. Math. Meth. Med. 7(2–3), 189–213 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. Marciniak-Czochra, M. Kimmel, Modelling of early lung cancer progression: influence of growth factor production and cooperation between partially transformed cells. Math. Model Meth. Appl. Sci. 17(Suppl 01), 1693–1719 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Marciniak-Czochra, M. Kimmel, Reaction-difusion model of early carcinogenesis: the effects of influx of mutated cells. Math. Model. Nat. Phenom. 3(07), 90–114 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Marciniak-Czochra, M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques. SIAM J. Math. Anal. 40(1), 215–237 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    A. Marciniak-Czochra, G. Karch, K. Suzuki, Unstable patterns in reaction-diffusion model of early carcinogenesis. J. Math. Pures Appl. 99(5), 509–543 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Marciniak-Czochra, S. Härting, G. Karch, K. Suzuki, Dynamical spike solutions in a nonlocal model of pattern formation. Arxiv:1307.6236 (2013, preprint)Google Scholar
  27. 27.
    L. Morandi, S. Asioli, A. Cavazza, A. Pession, S. Damiani, Genetic relationship among atypical adenomatous hyperplasia, bronchioloalveolar carcinoma and adenocarcinoma of the lung. Lung Cancer 56(1), 35–42 (2007)CrossRefGoogle Scholar
  28. 28.
    J. Paulsson, O.G. Berg, M. Ehrenberg, Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl. Acad. Sci. 97(13), 7148–7153 (2000)CrossRefGoogle Scholar
  29. 29.
    P.P. Provenzano, K.W. Eliceiri, J.M. Campbell, D.R. Inman, J.G. White, P.J. Keely, Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4(1), 1–15 (2006)CrossRefGoogle Scholar
  30. 30.
    A.L. Rubin, Suppression of transformation by and growth adaptation to low concentrations of glutamine in NIH-3T3 cells. Cancer Res. 50(9), 2832–2839 (1990)Google Scholar
  31. 31.
    H. Rubin, Fields and field cancerization: the preneoplastic origins of cancer. Bioessays 33(3), 224–231 (2011)CrossRefGoogle Scholar
  32. 32.
    T. Sano, Y. Kitayama, H. Igarashi, M. Suzuki, F. Tanioka, K. Chida, K. Okudela, H. Sugimura, Chromosomal numerical abnormalities in early stage lung adenocarcinoma. Pathol. Int. 56(3), 117–125 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Seton-Rogers, Tumour microenvironment: field effect. Nat. Rev. Cancer 12(8), 508–509 (2012)CrossRefGoogle Scholar
  34. 34.
    D.P. Slaughter, H.W. Southwick, W. Smejkal, “Field cancerization” in oral stratified squamous epithelium. Cancer 6, 963–968 (1953)CrossRefGoogle Scholar
  35. 35.
    A. Slepoy, A.P. Thompson, S.J. Plimpton, A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128, 205101 (2008)CrossRefGoogle Scholar
  36. 36.
    D.L. Stoler, N. Chen, M. Basik, M.S. Kahlenberg, M.A. Rodriguez-Bigas, N.J. Petrelli, G.R. Anderson, The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl. Acad. Sci. 96(26), 15121–15126 (1999)CrossRefGoogle Scholar
  37. 37.
    K. Takamochi, T. Ogura, K. Suzuki, H. Kawasaki, Y. Kurashima, T. Yokose, A. Ochiai, K. Nagai, Y. Nishiwaki, H. Esumi, Loss of heterozygosity on chromosomes 9q and 16p in atypical adenomatous hyperplasia concomitant with adenocarcinoma of the lung. Am. J. Pathol. 159(5), 1941–1948 (2001)CrossRefGoogle Scholar
  38. 38.
    J.-L. Tsao, Y. Yatabe, R. Salovaara, H.J. Järvinen, J.-P. Mecklin, L.A. Aaltonen, S. Tavaré, D. Shibata, Genetic reconstruction of individual colorectal tumor histories. Proc. Natl. Acad. Sci. 97(3), 1236–1241 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of StatisticsRice UniversityHoustonUSA

Personalised recommendations