Skip to main content

Finite Element Approximation of the Steady Smagorinsky Model

  • Chapter
  • First Online:
Mathematical and Numerical Foundations of Turbulence Models and Applications

Abstract

This chapter is devoted to the numerical approximation of the Smagorinsky model, in steady regime. We consider this model as a regularization of Navier–Stokes equations that includes the modeling of eddy diffusion effects by means of a discrete viscosity. We introduce Lagrange finite element spaces adapted to approximate the slip condition. We prove stability and strong convergence for solutions with the natural minimal regularity. We moreover study the asymptotic energy balance and in particular prove that the subgrid energy associated to the eddy diffusion asymptotically vanishes. We analyze the approximation of laminar flow by the SM, by means of error estimates for smooth solutions. These show a lack of optimality due to the Smagorinsky modeling of eddy viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansys-Fluent. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent

  2. Barenblatt, G.I.: Similarity, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  3. Bernardi, C., Maday, Y.: Approximations Spectrales des Problèmes aux Limites Elliptiques. Springer, Paris (1992)

    Google Scholar 

  4. Bernardi C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comput. 44(169), 71–79 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problèmes aux Limites Elliptiques. Mathématiques and Applications, vol. 45. Springer, Berlin (2004)

    Google Scholar 

  6. Borggaard, J., Iliescu, T., Roop, J.P.: A bounded artificial viscosity large eddy simulation model. SIAM J. Numer. Anal. 47(1), 622–645 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43, 2544–2566 (2000)

    Article  MathSciNet  Google Scholar 

  8. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods (Texts in Applied Mathematics, vol. 15). Springer, New York (2000)

    Google Scholar 

  9. Brezzi, F., Falk, R.S.: Stability of a higher-order Hood-Taylor method. SINUM 28, 581–590 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brézzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  11. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximati1on of nonlinear problems, Part I: branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    MATH  MathSciNet  Google Scholar 

  12. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems, Part II: limits points. Numer. Math. 37, 1–28 (1981)

    MATH  MathSciNet  Google Scholar 

  13. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problelns, Part III: simple bifurcation points. Numer. Math. 37, 1–30 (1981)

    MATH  MathSciNet  Google Scholar 

  14. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis in the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bucur, D., Feireisl, E., Net\(\check{\mbox{ c}}\) asov\(\acute{\mbox{ a}}\), \(\check{\mbox{ S}}\)., Wolf, J.: On the asymptotic limit of the Navier-Stokes system on domains with rough boundaries. J. Differ. Equ. 244, 2890–2908 (2008)

    Google Scholar 

  16. Bucur, D., Feireisl, E., Net\(\check{\mbox{ c}}\) asov\(\acute{\mbox{ a}}\), S.: Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197, 117–138 (2010)

    Google Scholar 

  17. Burman, E.: Interior penalty variational multiscale method for the incompressible Navier–Stokes equations: monitoring artificial dissipation. Comput. Methods Appl. Mech. Eng. 196, 4045–4058 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Casado-Diaz, J., Fernandez-Cara, E., Simon, J.: Why viscous fluids adhere to rugose walls: a mathematical explanation. J. Differ. Equ. 189, 526–537 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Casado-Diaz, J., Luna-Laynez, M., Suarez-Grau, F.J.: Asymptotic behavior of a viscous fluid with slip boundary conditions on a slightly rough wall. Math. Mod. Meth. Appl. Sci. 20, 121–156 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Chacón Rebollo, T.: A term by term stabilzation algorithm for finite element solution of incompressible flow problems. Numerische Mathematik 79, 283–319 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chacón Rebollo, T., Girault, V., Gómez Mármol, M., Sánchez Mun\(\tilde{\mbox{ n}}\) oz, I.: A high order term-by-term stabilization solver for incompressible flow problems. IMA J. Numer. Anal. (2012). doi:10.1093/imanum/drs023

    Google Scholar 

  23. Ciarlet, P.G.: Mathematical Elasticity. Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Google Scholar 

  24. Ciarlet, Ph.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)

    Google Scholar 

  25. Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9(R-2), 77–84 (1975)

    Google Scholar 

  26. Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190, 1579–1599 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Codina, R., Soto, O.: Approximation of the incompressible Navier-Stokes equations using orthogonal-subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput. Methods Appl. Mech. Eng. 193, 1403–1419 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Codina, R., Principe, J., Guasch, O., Badia, S.: Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput. Methods Appl. Mech. Eng. 196, 2413–2430 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Comsol Multiphysics. http://www.comsol.com/cfd-module

  30. Franca. L.P., Frey, S.L.: Stabilized finite elements II: the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)

    Google Scholar 

  31. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, New York (2004)

    Book  MATH  Google Scholar 

  32. Germano, M.: Differential filters of elliptic type. Phys. Fluids 29(6), 1757–1758 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 29(7), 2323–2324 (1986)

    Article  MATH  Google Scholar 

  34. Girault, V.; Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  35. Glowinski, R., Ciarlet, P.G., Lions, J.L., Ciarlet Ph.G.: Handbook of Numerical Analysis, vol.3, Finite Elements for Fluids. Elsevier, Amsterdam (2003)

    Google Scholar 

  36. Hou, T.Y., Yang, D.P., Ran, H.: Multiscale analysis and computation for the 3D incompressible Navier-Stokes equations. SIAM Multiscale Model. Simul. 6(4), 1317–1346 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hou, T.Y., Hu, X., Hussain, F.: Multiscale modeling of incompressible turbulent flows. J. Comp. Phys. 232, 383–396 (2013)

    Article  MathSciNet  Google Scholar 

  38. Hughes, T.J.R., Mallet, M.: A new finite element formulation for fluid dynamics: III. The generalized streamline operator for multidimensional advective–diffusive systems. Comp. Methods Appl. Mech. Eng. 58, 305–328 (1986)

    Google Scholar 

  39. Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for CFD:V. Circumventing the Brezzi-Babusca condition: a stable Petrov-Galerkin formulation of the Stokes problem accomodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59, 85–99 (1986)

    MATH  MathSciNet  Google Scholar 

  40. Iliescu, T., John, V., Layton, W.J.: Convergence of finite element approximations of large Eddy motion. Numer. Methods Partial Differ. Equ. 18(6), 689–710 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. John, V.: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  42. John, V.: On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows. Appl. Math. 4, 321–353 (2006)

    Article  Google Scholar 

  43. John, V., Layton, J.: Analysis of numerical errors in large Eddy simulation. SIAM J. Numer. Anal. 40, 995–1020 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  44. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilization applied to the Oseen problem. M2AN Math. Model. Numer. Anal. 4, 713–742 (2007)

    Google Scholar 

  45. Scott, R., Zhang, S.: Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shakib, F., Hughes, T.J.R., Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier–Stokes equations. Comp. Methods Appl. Mech. Eng. 89, 141–219 (1991)

    Google Scholar 

  47. Siemens Company. http://www.plm.automation.siemens.com/en_us/products/velocity/femap/

  48. Smagorinski, J.: General circulation experiment with the Primitive Equations. I. The Basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  49. Temam, R.: Navier–Stokes Equations. AMS Chelsea, Providence, RI (2001)

    Google Scholar 

  50. Van Driest, E.R.: On turbulent flow near a wall. J. Aerosp. Sci. 23, 1007 (1956)

    MATH  Google Scholar 

  51. Verfürth, R.: Finite element approximation of steady Navier–Stokes equations with mixed boundary conditions. M2AN 19, 461–475 (1985)

    Google Scholar 

  52. Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary conditions. Numer. Math. 50, 697–721 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  53. Verfürth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary conditions II. Numer. Math. 59, 615–636 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chacón Rebollo, T., Lewandowski, R. (2014). Finite Element Approximation of the Steady Smagorinsky Model. In: Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0455-6_9

Download citation

Publish with us

Policies and ethics