Skip to main content

Abstract

We aim to derive the incompressible Navier–Stokes equations from classical mechanics. We define Lagrange and Euler coordinates and the mass density within the framework of measure theory. This yields a mathematical statement that expresses the mass conservation principle, which allows to derive the mass conservation equation. We introduce the incompressible flows and focus on their kinematic, starting with the deformation tensor and the vorticity and then the local deformations of a ball of fluid in an incompressible flow by standard ODEs. We introduce the fluid motion equation for Newtonian fluids through appropriate measures, based on the fundamental law of classical mechanics and the expression of the stress tensor in terms of the deformation tensor. The mass conservation equation coupled to the fluid motion equation yields the incompressible Navier–Stokes equations. This chapter ends with a comprehensive list of boundary conditions associated with the Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, New-York (1989)

    Book  MATH  Google Scholar 

  2. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  4. Bretscher, O.: Linear Algebra with Applications. 4th edn. Prentice Hall, New Jersey (2008)

    Google Scholar 

  5. Cartan, H.: Differential Calculus. Herman, Paris (1971)

    MATH  Google Scholar 

  6. Coriolis G.G.: Mémoire sur les équations du mouvement relatif des systèmes de corps. J. de l’école Polytechnique 15, 142–154 (1835)

    Google Scholar 

  7. Duvaut, G.: Mécanique des Milieux Continus. Masson, Paris (1990)

    Google Scholar 

  8. Germain, P.: Mécanique des Milieux Continus. Masson, Paris (1962)

    Google Scholar 

  9. Gauckler, P.: Etudes thoriques et pratiques sur l’ecoulement et le mouvement des eaux. Comptes Rendues de l’Acadmie des Sci. 64, 818–822 (1867)

    Google Scholar 

  10. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, San Diego (1982)

    Google Scholar 

  11. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, New-York (1981)

    MATH  Google Scholar 

  12. Jeffreys, H.: Cartesian Tensors. Cambridge University Press, Cambridge (1931)

    MATH  Google Scholar 

  13. Khalil, H.K.: Nonlinear Systems. Prentice Hall Upper Saddle River, New Jersey (1996)

    Google Scholar 

  14. Landau, L.D., Lifchitz, E.M.: Fluid Mechanics. Pergamon Press, Paris (1959)

    Google Scholar 

  15. Landau, L.D., Lifchitz, E.M.: Mechanics. Butterworth-Heinemann, Oxford (1997)

    MATH  Google Scholar 

  16. Landweber L., Plotter M.H.: The shape and tension of a light flexible cable in a uniform current. J. Appl. Mech. 14, 121–126 (1947).

    Google Scholar 

  17. Le Dret, H., Lewandowski, R., Priour, D., Chagneau, F.: Numerical simulation of a cod end net. Part 1: equilibrium in a uniform flow. J. Elasticity 76, 139–162 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  19. Le Rond d’Alembert, J., Diderot, D.: Encyclopédie ou Dictionnaire Raisonné des Sciences, des arts et des Métiers, pp. t1–t17, André Le Breton Editeur, Paris (1772)

    Google Scholar 

  20. Lighthill, M.J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  21. Lewandowski, R.: Analyse mathématique et océanographie. RMA, Masson, Paris (1997)

    Google Scholar 

  22. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York (1984)

    Book  MATH  Google Scholar 

  23. Manning, R.: On the flow of water in open channels and pipes. Trans. Inst. Civil Eng. Ireland 20, 161–207 (1891)

    Google Scholar 

  24. Navier, C.L.: Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie des Sciences de l’Institut de France. vol. 6, pp. 375–394 (1822)

    Google Scholar 

  25. Oseen, C.W.: Hydrodynamik. Akademische Verlagsgesellschaft, Leipzig (1927)

    MATH  Google Scholar 

  26. Rudin, W.: Real and Complex Analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  27. Stewart, J.: Calculus: Concepts and Contexts. Brooks/Cole, Pacific Grove (2001)

    Google Scholar 

  28. Stokes, G.G.: Report on recent research in hydrodynamics. British Association for the Advancement of Science (1846)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chacón Rebollo, T., Lewandowski, R. (2014). Incompressible Navier–Stokes Equations. In: Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0455-6_2

Download citation

Publish with us

Policies and ethics