Skip to main content

Abstract

In this chapter we perform the numerical analysis of finite element approximations of the NS-TKE model. We consider truncated eddy viscosities and production term so as a smooth friction boundary condition for the TKE. In the steady case we prove stability and strong convergence to a weak solution. In the evolution case we consider a semi-implicit Euler scheme that decouples velocity and TKE. We prove the stability of the scheme and weak convergence to a limit problem in which the TKE only verifies a variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bénilan, Ph., Boccardo, L., Gallouet, Th., Gariepy, R., Pierre, M., Vázquez, J.L.: An L 1 theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Sér 4. 22(2), 241–273 (1995)

    Google Scholar 

  2. Bernardi, C., Chacón Rebollo, T., Lewandowski, R., Murat, F.: A model for two coupled turbulent fluids. I. Analysis of the system. Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XIV (Paris, 1997/1998), Studies in Applied Mathematics, vol. 31, pp. 69–102. North-Holland, Amsterdam (2002)

    Google Scholar 

  3. Bernardi, C., Chacón Rebollo, T., Lewandowski, R., Murat, F.: A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal. 40(6), 2368–2394 (2002)

    Article  Google Scholar 

  4. Bernardi, C., Chacón Rebollo, T., Gómez Mármol, M., Lewandowski, R., Murat, F.: A model for two coupled turbulent fluids. III. Numerical approximation by finite elements. Numer. Math. 98(1), 33–66 (2004)

    MATH  Google Scholar 

  5. Bernardi, C., Chacón Rebollo, T., Hecth, F., Lewandowski, R.: Automatic insertion of a turbulence model in the finite element discretization of the Navier–Stokes equations. Math. Mod. Meth. App. Sc. 19(7), 1139–1183 (2009)

    Article  MATH  Google Scholar 

  6. Boccardo, L., Gallouet, Th.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 88, 149–169 (1989)

    Article  MathSciNet  Google Scholar 

  7. Boccardo, L., Gallouet, Th.: Nonlinear elliptic equations with right hand-side measures. Comm. Partial Differ. Equ. 17, 641–655 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boris, J.P., Book, D.L.: Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. J. Comput. Phys. 11(1), 38–69 (1973)

    Google Scholar 

  9. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis in the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Burman, E., Ern, A.: Stabilized Galerkin approximation of convection-reaction-diffusion equations: discrete maximum principle and convergence. Math. Comp. 74(252), 1637–1652 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Casado-Diaz, J., Chacón Rebollo, T., Girault, V., Gómez Mármol, M., Murat, F.: Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1. Numer. Math. 105, 337–374 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chac-n Rebollo, T., Del Pino, S., Yakoubi. D., An iterative procedure to solve a coupled two-fluids turbulence model. M2AN Math. Model. Numer. Anal. 44, 693–713 (2010)

    Google Scholar 

  13. Chacón Rebollo, T., Gómez Mármol, M., Narbona Reina, G.: Numerical Analysis of the PSI solution of convection-diffusion through a Petrov–Galerkin formulation. M3AS 17(11), 1905–1936 (2007)

    Google Scholar 

  14. Codina, R.: A discontinuity-capturing crosswind dissipation for the finite element solution of the convection-diffusion equation. Comput. Methods Appl. Mech. Engrg. 110, 325–342 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data. Ann. Scoula Norm. Sup. Pisa Cl. Sci. 28(4), 575–580 (1999)

    MathSciNet  Google Scholar 

  16. Deconinck, H., Paillère, H., Struijs, R., Roe, P.L.: Multidimensional upwind schemes based upon fluctuation-splitting for systems of conservation laws. Comput. Mech. 11, 323–340 (1993)

    Article  MATH  Google Scholar 

  17. Droniou, J., Gallouët, T., Herbin, R.: A finite volume scheme for a noncoercive elliptic equation with measure data. SIAM J. Numer. Anal. 41(6), 1997–2031 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gallouët, T., Herbin, R.: Convergence of linear finite elements for diffusion equations with measure data. C. R. Math. Acad. Sci. Math. 338(1), 81–84 (2004)

    MATH  Google Scholar 

  19. Gallouët, T., Lederer, J., Lewandowski, R., Murat, F.: On a turbulent system with unbounded eddy viscosities. Nonlinear Anal. 52, 1051–1068 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gastaldo, L., Herbin, R., Latchő, J.-C.: An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux equation. Esaim. Math. Model. Numer. Anal. 44, 251–287 (2010)

    Article  MATH  Google Scholar 

  21. Gastaldo, L., Herbin, R., Latchő, J.-C.: A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. 31(1), 116–146 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I–A review. Comput. Methods Appl. Mech. Engrg. 196, 2197–2215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. John, V., Knobloch, P.: On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements. Comput. Methods Appl. Mech. Engrg. 197, 1997–2014 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kuzmin, D.: On the design of algebraic flux correction schemes for quadratic finite elements. J. Comput. Appl. Math. 218(1), 79–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228(7), 2517–2534 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kuzmin, D.: Linearity-preserving flux correction and convergence acceleration for constrained Galerkin schemes. J. Comput. Appl. Math. 236(9), 2317–2337 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuzmin, D., Turek, S.: High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198(1), 131–158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Löhner, R., Morgan, K., Peraire, J., Vahdati, M.: Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 7(10), 1093–1109 (1987)

    Article  MATH  Google Scholar 

  30. Mizukami, A., Hughes, T.J.R.: A Petrov–Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satisfying the maximum principle. Comput. Methods Appl. Mech. Engrg. 50, 181–193 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  31. Roos, H.G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion–Reaction and Flow Problems, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  32. Tabata, M.: Uniform convergence of the upwind finite element approximation for semilinear parabolic problems. J. Math. Kyoto Univ. (JMKYAZ) 18(2), 327–351 (1978)

    Google Scholar 

  33. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer, Dordrecht (2009)

    Google Scholar 

  34. Zalesak, S.T.: Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31(3), 335–362 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chacón Rebollo, T., Lewandowski, R. (2014). Numerical Approximation of NS-TKE Model. In: Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4939-0455-6_12

Download citation

Publish with us

Policies and ethics