Skip to main content

Numerical Approximation of Conditionally Invariant Measures via Maximum Entropy

  • Conference paper
  • First Online:
Ergodic Theory, Open Dynamics, and Coherent Structures

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 70))

  • 1114 Accesses

Abstract

It is well known that open dynamical systems can admit an uncountable number of (absolutely continuous) conditionally invariant measures (ACCIMs) for each prescribed escape rate. We propose and illustrate a convex optimisation-based selection scheme (essentially maximum entropy) for gaining numerical access to some of these measures. The work is similar to the maximum entropy (MAXENT) approach for calculating absolutely continuous invariant measures of nonsingular dynamical systems but contains some interesting new twists, including the following: (i) the natural escape rate is not known in advance, which can destroy convex structure in the problem; (ii) exploitation of convex duality to solve each approximation step induces important (but dynamically relevant and not at first apparent) localisation of support; and (iii) significant potential for application to the approximation of other dynamically interesting objects (e.g. invariant manifolds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The motivation in [22, p. 353] went beyond interval maps, including preturbulent phenomena in the now famous Lorenz equations, and metastable structures in atmospheric and other fluid flows and complex systems.

  2. 2.

    In the sense of positive m-measure

  3. 3.

    Clearly m ∘ T −1 ≪ m so that \(T: (A,m\vert _{A}) \rightarrow (X,m)\) is a nonsingular transformation, but \(T: (A,m\vert _{A}) \rightarrow (X,m\vert _{A})\) fails to be nonsingular, as \(m\vert _{A} \circ {T}^{-1}(H_{0}) = m(A \cap {T}^{-1}(H_{0})) > 0\) while \(m\vert _{A}(H_{0}) = 0\).

  4. 4.

    The flexibility to tune α without impact on numerical effort is reminiscent of the use of Ulam’s method to calculate the topological pressure of piecewise smooth dynamical systems by varying an inverse temperature parameter [16].

  5. 5.

    Note that \(\hat{C}_{ki} = 0\forall k\) only if \(B_{i} \cap \hat{ A} = \varnothing \). In this case also each \(\hat{C}_{ij} =\hat{ c}_{i} = 0\) and the value of \({\mathbb{M}}^{{\ast}}\lambda\) on B i is irrelevant to the solution of (P n, α ) (by Lemma 5.5). The function Ψ can be defined to be 1 on such coordinates.

  6. 6.

    A similar argument works if i is such that \([\varPsi (\mathbf{x}_{{\ast}})]_{i} = y_{i}^{{\ast}}/V (\mathbf{x}_{{\ast}})\).

References

  1. Afraimovich, V.S., Bunimovich, L.A.: Which hole is leaking the most: a topological approach to study open systems. Nonlinearity 23(3), 643–656 (2010). doi:10.1088/0951-7715/23/3/012

    Article  MATH  MathSciNet  Google Scholar 

  2. Bahsoun, W., Vaienti, S.: Metastability of certain intermittent maps. Nonlinearity 25(1), 107–124 (2012). doi:10.1088/0951-7715/25/1/107

    Article  MATH  MathSciNet  Google Scholar 

  3. Borwein, J., Lewis, A.: Duality relationships for entropy-like minimization problems. SIAM J. Control. Optim. 26, 325–338 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bose, C.J., Murray, R.: Minimum ‘energy’ approximations of invariant measures for nonsingular transformations. Discrete Contin. Dyn. Syst. 14(3), 597–615 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Bose, C.J., Murray, R.: Duality and the computation of approximate invariant densities for nonsingular transformations. SIAM J. Optim. 18(2), 691–709 (electronic) (2007). doi:10.1137/060658163

    Google Scholar 

  6. Bruin, H., Demers, M., Melbourne, I.: Existence and convergence properties of physical measures for certain dynamical systems with holes. Ergod. Theor. Dyn. Syst. 30, 687–728 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Collett, P., Martínez, S., Schmitt, B.: The Yorke–Pianigiani measure and the asymptotic law on the limit cantor set of expanding systems. Nonlinearity 7, 1437–1443 (1994)

    Article  MathSciNet  Google Scholar 

  8. Collett, P., Martínez, S., Schmitt, B.: The Pianigiani–Yorke measure for topological markov chains. Israel J. Math. 97, 61–70 (1997)

    Article  MathSciNet  Google Scholar 

  9. Demers, M.: Markov extensions and conditionally invariant measures for certain logistic maps with small holes. Ergod. Theor. Dyn. Syst. 25, 1139–1171 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demers, M.: Markov extensions for dynamical systems with holes: an application to expanding maps of the interval. Israel J. Math. 146, 189–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demers, M.: Dispersing billiards with small holes. In: Ergodic Theory, Open Dynamics, and Coherent Structures. Springer, New York (2014)

    Google Scholar 

  12. Demers, M., Young, L.S.: Escape rates and conditionally invariant measures. Nonlinearity 19, 377–397 (2006). doi:10.1088/0951-7715/19/2/008

    Article  MATH  MathSciNet  Google Scholar 

  13. Dolgopyat, D., Wright, P.: The diffusion coefficient for piecewise expanding maps of the interval with metastable states. Stoch. Dyn. 12(1), 1150,005, 13 (2012). doi:10.1142/S0219493712003547

    Google Scholar 

  14. Froyland, G.: Extracting dynamical behavior via Markov models. In: Nonlinear Dynamics and Statistics (Cambridge, 1998), pp. 281–321. Birkhäuser, Boston (2001)

    Google Scholar 

  15. Froyland, G., Dellnitz, M.: Detecting and locating near-optimal almost-invariant sets and cycles. SIAM J. Sci. Comput. 24(6), 1839–1863 (electronic) (2003). doi:10.1137/S106482750238911X

    Google Scholar 

  16. Froyland, G., Murray, R., Terhesiu, D.: Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension. Phys. Rev. E 76(3), 036702 (2007). doi:10.1103/PhysRevE.76.036702

    Article  MathSciNet  Google Scholar 

  17. Froyland, G., Murray, R., Stancevic, O.: Spectral degeneracy and escape dynamics for intermittent maps with a hole. Nonlinearity 24(9), 2435–2463 (2011). doi:10.1088/0951-7715/24/9/003

    Article  MATH  MathSciNet  Google Scholar 

  18. González-Tokman, C., Hunt, B.R., Wright, P.: Approximating invariant densities of metastable systems. Ergod. Theor. Dyn. Syst. 31(5), 1345–1361 (2011). doi:10.1017/S0143385710000337

    Article  MATH  Google Scholar 

  19. Homburg, A.J., Young, T.: Intermittency in families of unimodal maps. Ergod. Theor. Dyn. Syst. 22(1), 203–225 (2002). doi:10.1017/S0143385702000093

    Article  MATH  MathSciNet  Google Scholar 

  20. Keller, G., Liverani, C.: Rare events, escape rates and quasistationarity: some exact formulae. J. Stat. Phys. 135(3), 519–534 (2009). doi:10.1007/s10955-009-9747-8

    MATH  MathSciNet  Google Scholar 

  21. Liverani, C., Maume-Deschamps, V.: Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Ann. Inst. H. Poincaré Probab. Stat. 39, 385–412 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pianigiani, G., Yorke, J.: Expanding maps on sets which are almost invariant: decay and chaos. Trans. Am. Math. Soc. 252, 351–366 (1979)

    MATH  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  24. Ulam, S.: A Collection of Mathematical Problems. Interscience Publishers, New York (1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rua Murray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Bose, C., Murray, R. (2014). Numerical Approximation of Conditionally Invariant Measures via Maximum Entropy. In: Bahsoun, W., Bose, C., Froyland, G. (eds) Ergodic Theory, Open Dynamics, and Coherent Structures. Springer Proceedings in Mathematics & Statistics, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0419-8_5

Download citation

Publish with us

Policies and ethics