Skip to main content

Eigenvalues of Transfer Operators for Dynamical Systems with Holes

  • Conference paper
  • First Online:
  • 1123 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 70))

Abstract

For real-analytic expanding open dynamical systems in arbitrary finite dimension, we establish rigorous explicit bounds on the eigenvalues of the corresponding transfer operators acting on spaces of holomorphic functions. In dimension 1 the eigenvalue decay rate is exponentially fast, while in dimension d it is \(O{(\theta }^{{n}^{1/d} })\) as n for some 0 < θ < 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When acting on these spaces, \(\mathcal{P}_{H}\) has a strictly positive spectral radius δ, with δ > 0 an eigenvalue such that − logδ is the corresponding escape rate (see, e.g. [14] for one-dimensional maps); thus escape is at an exponential rate, rather than anything faster. Moreover, \({\delta }^{-n}\mathcal{P}_{H}^{n}1 \rightarrow \varrho\), where \(\varrho\) is the density function for the Pianigiani-Yorke measure [15].

  2. 2.

    The study of transfer operators on this space U(D) was inaugurated by Ruelle [18].

  3. 3.

    Ruelle [18], following Grothendieck [11], stated the asymptotics were O(θ n) as n → , independent of the dimension d, though Fried [10] corrected this to \(O{(\theta }^{{n}^{1/d} })\). One novelty of our results, relative to Fried and Ruelle, is that the constant θ, as well as the implicit constant in the big-O asymptotics, is rendered explicit.

  4. 4.

    This is a Banach space version of Weyl’s original inequality [19] in Hilbert space; the constant n n∕2 is optimal (see [12]).

  5. 5.

    As always, we are making the standing assumption that D is an admissible domain, i.e. that the closure of \(\cup _{i\in \mathcal{J}}T_{i}(D)\) lies in D.

  6. 6.

    If D has C 2 boundary, then H 2(D) can be identified with the \({L}^{2}(\partial D,\sigma )\)-closure of U(D), where σ denotes (2d − 1)-dimensional Lebesgue measure on the boundary \(\partial D\), normalised so that σ(∂ D) = 1. The inner product in H 2(D) is given (see [13, Chaps. 1.5 and 8]) by \((f,g) =\int _{\partial D}{f}^{{\ast}}\,\overline{{g}^{{\ast}}}\,d\sigma\), where, for h ∈ H 2(D), the symbol h denotes the corresponding nontangential limit function in L 2(∂ D, σ).

References

  1. Babenko, K.I.: Best approximations to a class of analytic functions (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 22, 631–640 (1958)

    MATH  MathSciNet  Google Scholar 

  2. Bahsoun, W., Bose, C.: Quasi-invariant measures, escape rates and the effect of the hole. Discrete Contin. Dyn. Syst. 27, 1107–1121 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bandtlow, O.F.: Resolvent estimates for operators belonging to exponential classes. Integr. Equ. Oper. Theory 61, 21–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bandtlow, O.F., Jenkinson, O.: Explicit a priori bounds on transfer operator eigenvalues. Comm. Math. Phys. 276, 901–905 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bandtlow, O.F., Jenkinson, O.: On the Ruelle eigenvalue sequence. Ergod. Theory Dyn. Syst. 28, 1701–1711 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demers, M., Young, L.-S.: Escape rates and conditionally invariant measures. Nonlinearity 19, 377–397 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Earle, C.J., Hamilton, R.S.: A fixed point theorem for holomorphic mappings. In: Chern, S., Smale, S. (eds.) Global Analysis. Proceedings of Symposia in Pure Mathematics, vol. XVI, pp. 61–65. American Mathematical Society, Providence R.I. (1970)

    Google Scholar 

  8. Farkov, Yu. A.: The N-widths of Hardy-Sobolev spaces of several complex variables. J. Approx. Theory 75, 183–197 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferguson, A., Pollicott, M.: Escape rates for Gibbs measures. Ergod. Theory Dyn. Syst. 32, 961–988 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fried, D.: Zeta functions of Ruelle and Selberg I. Ann. Sci. Ecole Norm. Sup. 9, 491–517 (1986)

    MathSciNet  Google Scholar 

  11. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16, (1955)

    Google Scholar 

  12. Hinrichs, A.: Optimal Weyl inequality in Banach spaces. Proc. Am. Math. Soc. 134, 731–735 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. AMS Chelsea, New York (1992)

    MATH  Google Scholar 

  14. Liverani, C., Maume-Deschamps, V.: Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Ann. Inst. H. Poincaré Probab. Stat. 39, 385–412 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pianigiani, G., Yorke, J.A.: Expanding maps on sets which are almost invariant: decay and chaos. Trans. Am. Math. Soc. 252, 351–366 (1979)

    MATH  MathSciNet  Google Scholar 

  16. Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  17. Pinkus, A.: n-widths in Approximation Theory. Springer, New York (1985)

    Google Scholar 

  18. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Weyl, H.: Inequalities between two kinds of eigenvalues of a linear transformation. Proc. Nat. Acad. Sci. USA 35, 408–411 (1949)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar F. Bandtlow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this paper

Cite this paper

Bandtlow, O.F., Jenkinson, O. (2014). Eigenvalues of Transfer Operators for Dynamical Systems with Holes. In: Bahsoun, W., Bose, C., Froyland, G. (eds) Ergodic Theory, Open Dynamics, and Coherent Structures. Springer Proceedings in Mathematics & Statistics, vol 70. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0419-8_2

Download citation

Publish with us

Policies and ethics