Skip to main content

A20-An Omnipotent Protein in the Liver: Prometheus Myth Resolved?

  • Chapter
  • First Online:
The Multiple Therapeutic Targets of A20

Abstract

Contribution of NF-κB inhibitory and ubiquitin-editing A20 (tnfaip3) to the liver’s protective response to injury, particularly to its anti-inflammatory armamentarium, is exemplified by the dramatic phenotype of A20 knockout mice that die prematurely of unfettered inflammation predominantly in the liver. A number of additional studies originating from our laboratory and others clearly demonstrate that A20 is part of the liver response to injury and resection. Upregulation of A20 in hepatocytes serves a broad hepatoprotective goal through combined anti-inflammatory, anti-apoptotic, anti-oxidant and pro-regenerative functions. The molecular basis for A20’s hepatoprotective functions were partially resolved and include blockade of NF-κB activation in support of its anti-inflammatory function, inhibition of pro-caspase 8 cleavage in support of its anti-apoptotic function, increasing Peroxisome Proliferator Activated Receptor α (PPARα) expression in support of its anti-oxidant function, and decreasing Cyclin Dependent Kinase Inhibitor p21 while boosting IL-6/STAT3 proliferative signals as part of its pro-regenerative function. In experimental animal models, overexpression of A20 in the liver protects from radical acute fulminant toxic hepatitis, lethal hepatectomy, and severe liver ischemia reperfusion injury (IRI), and allows successful engraftment of marginal liver grafts. Conversely, partial loss of A20, as in A20 heterozygote mice, significantly impairs liver regeneration and damage, which confers high lethality to an otherwise safe procedure i.e., 2/3 partial hepatectomy. This is the ultimate proof of the physiologic role of A20 in liver regeneration and repair. In recent work, A20’s functions in the liver have expanded to encompass regulation of lipid and glucose metabolism, unlocking a whole new set of metabolic diseases that could be affected by A20. In this chapter we review all available data regarding A20’s physiologic role in the liver, and reflect on the clinical implication of these findings with regard to A20-based therapies in the context of liver transplantation, resection of large liver tumors, liver fibrosis, and metabolic liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ramadori G, Moriconi F, Malik I, Dudas J. Physiology and pathophysiology of liver inflammation, damage and repair. J Physiol Pharmacol 2008; 59(Suppl 1): 107–17; PMID:18802219.

    PubMed  Google Scholar 

  2. Krebs HA. The citric acid cycle and the Szent-Györgyi cycle in pigeon breast muscle. Biochem J 1940; 34:775–9; PMID:16747218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Madeira VM. Overview of mitochondrial bioenergetics. Methods Mol Biol 2012; 810:1–6; PMID:22057557; http://dx.doi.org/10.1007/978-1-61779-382-0_1.

    Article  CAS  PubMed  Google Scholar 

  4. Schneider-Schaulies J. Cellular receptors for viruses: links to tropism and pathogenesis. J Gen Virol 2000; 81:1413–29; PMID:10811925.

    Article  CAS  PubMed  Google Scholar 

  5. Tang H, McLachlan A. Transcriptional regulation of hepatitis B virus by nuclear hormone receptors is a critical determinant of viral tropism. Proc Natl Acad Sci U S A 2001; 98:1841–6; PMID:11172038; http://dx.doi.org/10.1073/pnas.98.4.1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caraceni P, Van Thiel DH. Acute liver failure. Lancet 1995; 345:163–9; PMID:7823674; http://dx.doi.org/10.1016/S0140-6736(95)90171-X.

    Article  CAS  PubMed  Google Scholar 

  7. Lee WM. Acute liver failure. N Engl J Med 1993; 329:1862–72; PMID:8305063; http://dx.doi.org/10.1056/NEJM199312163292508.

    Article  CAS  PubMed  Google Scholar 

  8. Neuberger J. Prediction of survival for patients with fulminant hepatic failure. Hepatology 2005; 41:19–22; PMID:15690476; http://dx.doi.org/10.1002/hep.20562.

    Article  PubMed  Google Scholar 

  9. Sass DA, Shakil AO. Fulminant hepatic failure. Liver Transpl 2005; 11:594–605; PMID:15915484; http://dx.doi.org/10.1002/lt.20435.

    Article  PubMed  Google Scholar 

  10. Trey C, Lipworth L, Chalmers TC, Davidson CS, Gottlieb LS, Popper H, Saunders SJ. Fulminant hepatic failure. Presumable contribution to halothane. N Engl J Med 1968; 279:798–801; PMID:5676223; http://dx.doi.org/10.1056/NEJM196810102791504.

    Article  CAS  PubMed  Google Scholar 

  11. Fingerote RJ, Bain VG. Fulminant hepatic failure. Am J Gastroenterol 1993; 88:1000–10; PMID:8317398.

    CAS  PubMed  Google Scholar 

  12. Shakil AO, Kramer D, Mazariegos GV, Fung JJ, Rakela J. Acute liver failure: clinical features, outcome analysis, and applicability of prognostic criteria. Liver Transpl 2000; 6:163–9; PMID:10719014.

    CAS  PubMed  Google Scholar 

  13. Carithers RLJ Jr.; American Association for the Study of Liver Diseases. Liver transplantation. Liver Transpl 2000; 6:122–35; PMID:10648593; http://dx.doi.org/10.1002/lt.500060122.

    Article  PubMed  Google Scholar 

  14. Bonham CA, Gerber DA, Grewal H. Live donor transplantation: Strategies for expanding the adult organ donor pool. Conference report. 2001; 1st Annual Winter Symposium: Living donor adult-to-adult transplantation of the kidney and liver(Ponta Vedra Beach Florida).

    Google Scholar 

  15. Goss JA, Shackleton CR, McDiarmid SV, Maggard M, Swenson K, Seu P, Vargas J, Martin M, Ament M, Brill J, et al. Long-term results of pediatric liver transplantation: an analysis of 569 transplants. Ann Surg 1998; 228:411–20; PMID:9742924; http://dx.doi.org/10.1097/00000658-199809000-00014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lo CM, Fan ST, Chan JK, Wei W, Lo RJ, Lai CL. Minimum graft volume for successful adult-to-adult living donor liver transplantation for fulminant hepatic failure. Transplantation 1996; 62:696–8; PMID:8830841; http://dx.doi.org/10.1097/00007890-199609150-00029.

    Article  CAS  PubMed  Google Scholar 

  17. Panis Y, McMullan DM, Emond JC Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. Surgery 1997; 121:142–9; PMID:9037225; http://dx.doi.org/10.1016/S0039-6060(97)90283-X.

    Article  CAS  PubMed  Google Scholar 

  18. Rauen U, Polzar B, Stephan H, Mannherz HG, de Groot H. Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J 1999; 13:155–68; PMID:9872940.

    Article  CAS  PubMed  Google Scholar 

  19. Schauer RJ, Bilzer M, Kalmuk S, Gerbes AL, Leiderer R, Schildberg FW, Messmer K. Microcirculatory failure after rat liver transplantation is related to Kupffer cell-derived oxidant stress but not involved in early graft dysfunction. Transplantation 2001; 72:1692–9; PMID:11726835; http://dx.doi.org/10.1097/00007890-200111270-00022.

    Article  CAS  PubMed  Google Scholar 

  20. Casillas-Ramírez A, Mosbah IB, Ramalho F, Roselló-Catafau J, Peralta C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci 2006; 79:1881–94; PMID:16828807; http://dx.doi.org/10.1016/j.lfs.2006.06.024.

    Article  PubMed  CAS  Google Scholar 

  21. Diehl AM, Rai RM. Liver regeneration 3: Regulation of signal transduction during liver regeneration. FASEB J 1996; 10:215–27; PMID:8641555.

    Article  CAS  PubMed  Google Scholar 

  22. Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J 1995; 9:1527–36; PMID:8529831.

    Article  CAS  PubMed  Google Scholar 

  23. Fausto N. Liver regeneration. J Hepatol 2000; 32(Suppl): 19–31; PMID:10728791; http://dx.doi.org/10.1016/S0168-8278(00)80412-2.

    Article  CAS  PubMed  Google Scholar 

  24. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997; 276:60–6; PMID:9082986; http://dx.doi.org/10.1126/science.276.5309.60.

    Article  CAS  PubMed  Google Scholar 

  25. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006; 43(Suppl 1):S45–53; PMID:16447274; http://dx.doi.org/10.1002/hep.20969.

    Article  CAS  PubMed  Google Scholar 

  26. Fausto N, Laird AD, Webber EM. Liver regeneration. 2. Role of growth factors and cytokines in hepatic regeneration. FASEB J 1995; 9:1527–36;; PMID:8529831.

    CAS  Google Scholar 

  27. Cornell RP, Liljequist BL, Bartizal KF. Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice. Hepatology 1990; 11:916–22; PMID:2194922; http://dx.doi.org/10.1002/hep.1840110603.

    Article  CAS  PubMed  Google Scholar 

  28. Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA, Greenbaum LE, Lambris JD. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J Exp Med 2003; 198:913–23; PMID:12975457; http://dx.doi.org/10.1084/jem.20030374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell JS, Riehle KJ, Brooling JT, Bauer RL, Mitchell C, Fausto N. Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4. J Immunol 2006; 176:2522–8; PMID:16456013.

    Article  CAS  PubMed  Google Scholar 

  30. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006; 130:1886–900; PMID:16697751; http://dx.doi.org/10.1053/j.gastro.2006.01.038.

    Article  CAS  PubMed  Google Scholar 

  31. Seki E, Tsutsui H, Iimuro Y, Naka T, Son G, Akira S, Kishimoto T, Nakanishi K, Fujimoto J. Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration. Hepatology 2005; 41:443–50; PMID:15723296; http://dx.doi.org/10.1002/hep.20603.

    Article  CAS  PubMed  Google Scholar 

  32. Taub R, Greenbaum LE, Peng Y. Transcriptional regulatory signals define cytokine-dependent and-independent pathways in liver regeneration. Semin Liver Dis 1999; 19:117–27; PMID:10422195; http://dx.doi.org/10.1055/s-2007-1007104.

    Article  CAS  PubMed  Google Scholar 

  33. Heim MH, Gamboni G, Beglinger C, Gyr K. Specific activation of AP-1 but not Stat3 in regenerating liver in mice. Eur J Clin Invest 1997; 27:948–55; PMID:9395792; http://dx.doi.org/10.1046/j.1365-2362.1997.2100770.x.

    Article  CAS  PubMed  Google Scholar 

  34. Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA 1997; 94:1441–6; PMID:9037072; http://dx.doi.org/10.1073/pnas.94.4.1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tian Y, Jochum W, Georgiev P, Moritz W, Graf R, Clavien PA. Kupffer cell-dependent TNF-alpha signaling mediates injury in the arterialized small-for-size liver transplantation in the mouse. Proc Natl Acad Sci U S A 2006; 103:4598–603; PMID:16537374; http://dx.doi.org/10.1073/pnas.0600499103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wuestefeld T, Klein C, Streetz KL, Betz U, Lauber J, Buer J, Manns MP, Müller W, Trautwein C. Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration. J Biol Chem 2003; 278:11281–8; PMID:12509437; http://dx.doi.org/10.1074/jbc.M208470200.

    Article  CAS  PubMed  Google Scholar 

  37. Barton BE, Jackson JV. Protective role of interleukin 6 in the lipopolysaccharide-galactosamine septic shock model. Infect Immun 1993; 61:1496–9; PMID:8454355.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen RH, Chang MC, Su YH, Tsai YT, Kuo ML. Interleukin-6 inhibits transforming growth factor-beta-induced apoptosis through the phosphatidylinositol 3-kinase/Akt and signal transducers and activators of transcription 3 pathways. J Biol Chem 1999; 274:23013–9; PMID:10438468; http://dx.doi.org/10.1074/jbc.274.33.23013.

    Article  CAS  PubMed  Google Scholar 

  39. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996; 274:1379–83; PMID:8910279; http://dx.doi.org/10.1126/science.274.5291.1379.

    Article  CAS  PubMed  Google Scholar 

  40. Blindenbacher A, Wang X, Langer I, Savino R, Terracciano L, Heim MH. Interleukin 6 is important for survival after partial hepatectomy in mice. Hepatology 2003; 38:674–82; PMID:12939594; http://dx.doi.org/10.1053/jhep.2003.50378.

    Article  CAS  PubMed  Google Scholar 

  41. Galun E, Zeira E, Pappo O, Peters M, Rose-John S. Liver regeneration induced by a designer human IL-6/sIL-6R fusion protein reverses severe hepatocellular injury. FASEB J 2000; 14:1979–87; PMID:11023982; http://dx.doi.org/10.1096/fj.99-0913com.

    Article  CAS  PubMed  Google Scholar 

  42. Wüstefeld T, Rakemann T, Kubicka S, Manns MP, Trautwein C. Hyperstimulation with interleukin 6 inhibits cell cycle progression after hepatectomy in mice. Hepatology 2000; 32:514–22; PMID:10960443; http://dx.doi.org/10.1053/jhep.2000.16604.

    Article  PubMed  Google Scholar 

  43. Campbell JS, Prichard L, Schaper F, Schmitz J, Stephenson-Famy A, Rosenfeld ME, Argast GM, Heinrich PC, Fausto N. Expression of suppressors of cytokine signaling during liver regeneration. J Clin Invest 2001; 107:1285–92; PMID:11375418; http://dx.doi.org/10.1172/JCI11867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000; 18:143–64; PMID:10837055; http://dx.doi.org/10.1146/annurev.immunol.18.1.143.

    Article  CAS  PubMed  Google Scholar 

  45. Sasaki A, Yasukawa H, Suzuki A, Kamizono S, Syoda T, Kinjyo I, Sasaki M, Johnston JA, Yoshimura A. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 1999; 4:339–51; PMID:10421843; http://dx.doi.org/10.1046/j.1365-2443.1999.00263.x.

    Article  CAS  PubMed  Google Scholar 

  46. Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Förster I, Clausen BE, et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 2003; 4:540–5; PMID:12754505; http://dx.doi.org/10.1038/ni931.

    Article  CAS  PubMed  Google Scholar 

  47. Lang R, Pauleau AL, Parganas E, Takahashi Y, Mages J, Ihle JN, Rutschman R, Murray PJ. SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 2003; 4:546–50; PMID:12754506; http://dx.doi.org/10.1038/ni932.

    Article  CAS  PubMed  Google Scholar 

  48. Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, Aki D, Hanada T, Takeda K, Akira S, Hoshijima M, et al. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 2003; 4:551–6; PMID:12754507; http://dx.doi.org/10.1038/ni938.

    Article  CAS  PubMed  Google Scholar 

  49. Diehl AM, Rai R. Review: regulation of liver regeneration by pro-inflammatory cytokines. J Gastroenterol Hepatol 1996; 11:466–70; PMID:8743919; http://dx.doi.org/10.1111/j.1440-1746.1996.tb00292.x.

    Article  CAS  PubMed  Google Scholar 

  50. White P, Brestelli JE, Kaestner KH, Greenbaum LE. Identification of transcriptional networks during liver regeneration. J Biol Chem 2005; 280:3715–22; PMID:15546871; http://dx.doi.org/10.1074/jbc.M410844200.

    Article  CAS  PubMed  Google Scholar 

  51. Li W, Liang X, Leu JI, Kovalovich K, Ciliberto G, Taub R. Global changes in interleukin-6-dependent gene expression patterns in mouse livers after partial hepatectomy. Hepatology 2001; 33:1377–86; PMID:11391526; http://dx.doi.org/10.1053/jhep.2001.24431.

    Article  CAS  PubMed  Google Scholar 

  52. Guo F, Nian H, Zhang H, Huang L, Tang Y, Xiao X, He D. Proteomic analysis of the transition from quiescent to proliferating stages in rat liver hepatectomy model. Proteomics 2006; 6:3075–86; PMID:16619303; http://dx.doi.org/10.1002/pmic.200500322.

    Article  CAS  PubMed  Google Scholar 

  53. Lee GH, Merlino G, Fausto N. Development of liver tumors in transforming growth factor alpha transgenic mice. Cancer Res 1992; 52:5162–70; PMID:1327502.

    CAS  PubMed  Google Scholar 

  54. Russell WE, Kaufmann WK, Sitaric S, Luetteke NC, Lee DC. Liver regeneration and hepatocarcinogenesis in transforming growth factor-alpha-targeted mice. Mol Carcinog 1996; 15:183–9; PMID:8597531; http://dx.doi.org/10.1002/(SICI)1098-2744(199603)15:3<183∷AID-MC4>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt C, Bladt F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 1995; 373:699–702; PMID:7854452; http://dx.doi.org/10.1038/373699a0.

    Article  CAS  PubMed  Google Scholar 

  56. Breitkopf K, Godoy P, Ciuclan L, Singer MV, Dooley S. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol 2006; 44:57–66; PMID:16397841; http://dx.doi.org/10.1055/s-2005-858989.

    Article  CAS  PubMed  Google Scholar 

  57. Macias-Silva M, Li W, Leu JI, Crissey MA, Taub R. Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem 2002; 277:28483–90; PMID:12023281; http://dx.doi.org/10.1074/jbc.M202403200.

    Article  CAS  PubMed  Google Scholar 

  58. Zhong Z, Tsukada S, Rehman H, et al. Inhibition of transforming growth factor-beta/Smad signaling improves regeneration of small-for-size rat liver grafts. Liver transplantation: official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. Feb 2010;16(2): 181–190.

    Article  Google Scholar 

  59. Jung SM, Lee JH, Park J, Oh YS, Lee SK, Park JS, Lee YS, Kim JH, Lee JY, Bae YS, et al. Smad6 inhibits non-canonical TGF-⨿1 signalling by recruiting the deubiquitinase A20 to TRAF6. Nat Commun 2013; 4:2562; PMID:24096742; http://dx.doi.org/10.1038/ncomms3562.

    Article  PubMed  CAS  Google Scholar 

  60. Busuttil RW. How safe are donors in adult-to-adult living related liver transplantation? Liver Transpl 2002; 8:121–2; PMID:11862587; http://dx.doi.org/10.1053/jlts.2002.31736.

    Article  PubMed  Google Scholar 

  61. Emond JC, Freeman RB Jr., Renz JF, Yersiz H, Rogiers X, Busuttil RW. Optimizing the use of donated cadaver livers: analysis and policy development to increase the application of split-liver transplantation. Liver Transpl 2002; 8:863–72; PMID:12360426; http://dx.doi.org/10.1053/jlts.2002.34639.

    Article  PubMed  Google Scholar 

  62. Ghobrial RM, Saab S, Lassman C, Lu DS, Raman S, Limanond P, Kunder G, Marks K, Amersi F, Anselmo D, et al. Donor and recipient outcomes in right lobe adult living donor liver transplantation. Liver Transpl 2002; 8:901–9; PMID:12360431; http://dx.doi.org/10.1053/jlts.2002.35548.

    Article  PubMed  Google Scholar 

  63. Liang TB, Man K, Kin-Wah Lee T, Hong-Teng Tsui S, Lo CM, Xu X, Zheng SS, Fan ST, Wong J. Distinct intragraft response pattern in relation to graft size in liver transplantation. Transplantation 2003; 75:673–8; PMID:12640308; http://dx.doi.org/10.1097/01.TP.0000048490.24429.89.

    Article  CAS  PubMed  Google Scholar 

  64. Zhong Z, Schwabe RF, Kai Y, He L, Yang L, Bunzendahl H, Brenner DA, Lemasters JJ. Liver regeneration is suppressed in small-for-size liver grafts after transplantation: involvement of c-Jun N-terminal kinase, cyclin D1, and defective energy supply. Transplantation 2006; 82:241–50; PMID:16858288; http://dx.doi.org/10.1097/01.tp.0000228867.98158.d2.

    Article  CAS  PubMed  Google Scholar 

  65. Cataldegirmen G, Zeng S, Feirt N, Ippagunta N, Dun H, Qu W, Lu Y, Rong LL, Hofmann MA, Kislinger T, et al. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB. J Exp Med 2005; 201:473–84; PMID:15699076; http://dx.doi.org/10.1084/jem.20040934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ghobrial RM, Gornbein J, Steadman R, et al. Pretransplant model to predict posttransplant survival in liver transplant patients. Ann Surg. Sep 2002;236(3):315–322; discussion 322-313.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Opipari AW Jr., Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265:14705–8; PMID:2118515.

    CAS  PubMed  Google Scholar 

  68. Opipari AW Jr., Hu HM, Yabkowitz R, Dixit VM. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem 1992; 267:12424–7; PMID:1618749.

    CAS  PubMed  Google Scholar 

  69. Sarma V, Lin Z, Clark L, Rust BM, Tewari M, Noelle RJ, Dixit VM. Activation of the B-cell surface receptor CD40 induces A20, a novel zinc finger protein that inhibits apoptosis. J Biol Chem 1995; 270:12343–6; PMID:7539000; http://dx.doi.org/10.1074/jbc.270.21.12343.

    Article  CAS  PubMed  Google Scholar 

  70. Tewari M, Wolf FW, Seldin MF, O’Shea KS, Dixit VM, Turka LA. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J Immunol 1995; 154:1699–706; PMID:7836754.

    CAS  PubMed  Google Scholar 

  71. Arvelo MB, Badrichani AZ, Stroka DM, Grey ST, Bach FH, Ferran C. A novel function for A20 in smooth muscle cells: inhibition of activation and proliferation. Transplant Proc 1999; 31:858–9; PMID:10083374; http://dx.doi.org/10.1016/S0041-1345(98)01804-1.

    Article  CAS  PubMed  Google Scholar 

  72. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med 1999; 190:1135–46; PMID:10523611; http://dx.doi.org/10.1084/jem.190.8.1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O’Rourke K, Ward PA, Prochownik EV, Marks RM. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 1990; 265:2973–8; PMID:2406243.

    CAS  PubMed  Google Scholar 

  74. Laherty CD, Hu HM, Opipari AW, Wang F, Dixit VM. The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem 1992; 267:24157–60; PMID:1332946.

    CAS  PubMed  Google Scholar 

  75. Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells: a regulatory response to injury. Immunol Today 1997; 18:483–6; PMID:9357140; http://dx.doi.org/10.1016/S0167-5699(97)01129-8.

    Article  CAS  PubMed  Google Scholar 

  76. Laherty CD, Perkins ND, Dixit VM. Human T cell leukemia virus type I Tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor kappa B. J Biol Chem 1993; 268:5032–9; PMID:8444879.

    CAS  PubMed  Google Scholar 

  77. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4; PMID:11009421; http://dx.doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 2000; 12:301–11; PMID:10755617; http://dx.doi.org/10.1016/S1074-7613(00)80183-1.

    Article  CAS  PubMed  Google Scholar 

  79. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694–9; PMID:15258597; http://dx.doi.org/10.1038/nature02794.

    Article  CAS  PubMed  Google Scholar 

  80. Ferran C, Stroka DM, Badrichani AZ, Cooper JT, Wrighton CJ, Soares M, Grey ST, Bach FH. A20 inhibits NF-kappaB activation in endothelial cells without sensitizingto tumor necrosis factor-mediated apoptosis. Blood 1998; 91:2249–58; PMID:9516122.

    CAS  PubMed  Google Scholar 

  81. da Silva CG, Maccariello ER, Wilson SW, Putheti P, Daniel S, Damrauer SM, Peterson CR, Siracuse JJ, Kaczmarek E, Ferran C. Hepatocyte growth factor preferentially activates the anti-inflammatory arm of Nf-κB signaling to induce A20 and protect renal proximal tubular epithelial cells from inflammation. J Cell Physiol 2012; 227:1382–90; PMID:21618526; http://dx.doi.org/10.1002/jcp.22851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Evans PC, Kilshaw PJ. Interleukin-13 protects endothelial cells from apoptosis and activation: association with the protective genes A20 and A1. Transplantation 2000; 70:928–34; PMID:11014646; http://dx.doi.org/10.1097/00007890-200009270-00010.

    Article  CAS  PubMed  Google Scholar 

  83. Daniel S, Arvelo MB, Patel VI, Longo CR, Shrikhande G, Shukri T, Mahiou J, Sun DW, Mottley C, Grey ST, et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 2004; 104:2376–84; PMID:15251990; http://dx.doi.org/10.1182/blood-2003-02-0635.

    Article  CAS  PubMed  Google Scholar 

  84. Patel VI, Daniel S, Longo CR, Shrikhande GV, Scali ST, Czismadia E, Groft CM, Shukri T, Motley-Dore C, Ramsey HE, et al. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J 2006; 20:1418–30; PMID:16816117; http://dx.doi.org/10.1096/fj.05-4981com.

    Article  CAS  PubMed  Google Scholar 

  85. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4; PMID:11009421; http://dx.doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5:1052–60; PMID:15334086; http://dx.doi.org/10.1038/ni1110.

    Article  CAS  PubMed  Google Scholar 

  87. Turer EE, Tavares RM, Mortier E, Hitotsumatsu O, Advincula R, Lee B, Shifrin N, Malynn BA, Ma A. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J Exp Med 2008; 205:451–64; PMID:18268035; http://dx.doi.org/10.1084/jem.20071108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, et al.; U.S. Acute Liver Failure Study Group. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002; 137:947–54; PMID:12484709; http://dx.doi.org/10.7326/0003-4819-137-12-200212170-00007.

    Google Scholar 

  89. Lee WM. Acute liver failure. N Engl J Med 1993; 329:1862–72; PMID:8305063; http://dx.doi.org/10.1056/NEJM199312163292508.

    Article  CAS  PubMed  Google Scholar 

  90. Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 2009; 16:3041–53; PMID:19689281; http://dx.doi.org/10.2174/092986709788803097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arvelo MB, Cooper JT, Longo C, Daniel S, Grey ST, Mahiou J, Czismadia E, Abu-Jawdeh G, Ferran C. A20 protects mice from D-galactosamine/lipopolysaccharide acute toxic lethal hepatitis. Hepatology 2002; 35:535–43; PMID:11870365; http://dx.doi.org/10.1053/jhep.2002.31309.

    Article  CAS  PubMed  Google Scholar 

  92. Rahman TM, Hodgson HJ. Animal models of acute hepatic failure. Int J Exp Pathol 2000; 81:145–57; PMID:10762442; http://dx.doi.org/10.1046/j.1365-2613.2000.00144.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Josephs MD, Bahjat FR, Fukuzuka K, Ksontini R, Solorzano CC, Edwards CK 3rd, Tannahill CL, Mackay SL, Copeland EM 3rd, Moldawer LL. Lipopolysaccharide and D-galactosamine-induced hepatic injury is mediated by TNF-alpha and not by Fas ligand. Am J Physiol Regul Integr Comp Physiol 2000; 278:R1196–201; PMID:10801287.

    Article  CAS  PubMed  Google Scholar 

  94. Mignon A, Rouquet N, Fabre M, Martin S, Pagès JC, Dhainaut JF, Kahn A, Briand P, Joulin V. LPS challenge in D-galactosamine-sensitized mice accounts for caspase-dependent fulminant hepatitis, not for septic shock. Am J Respir Crit Care Med 1999; 159:1308–15; PMID:10194182; http://dx.doi.org/10.1164/ajrccm.159.4.9712012.

    Article  CAS  PubMed  Google Scholar 

  95. Liu B, Jiang D, Ou Y, Hu Z, Jiang J, Lei X. An anti-inflammatory role of A20 zinc finger protein during trauma combined with endotoxin challenge. The Journal of surgical research.

    Google Scholar 

  96. Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation. Liver Transpl 2003; 9:651–63; PMID:12827549; http://dx.doi.org/10.1053/jlts.2003.50105.

    Article  PubMed  Google Scholar 

  97. Clavien PA, Selzner M. Hepatic steatosis and transplantation. Liver Transpl 2002; 8:980; PMID:12360447; http://dx.doi.org/10.1053/jlts.2002.35671.

    Article  PubMed  Google Scholar 

  98. Lentsch AB, Kato A, Yoshidome H, McMasters KM, Edwards MJ. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 2000; 32:169–73; PMID:10915720; http://dx.doi.org/10.1053/jhep.2000.9323.

    Article  CAS  PubMed  Google Scholar 

  99. Sun J, Sun L, Zhang N, Lu X, Zhang H. A20 is up-regulated in primary mouse hepatocytes subjected to hypoxia and reperfusion. Cell Biochem Funct 2012; 30:683–6; PMID:22736257; http://dx.doi.org/10.1002/cbf.2850.

    Article  PubMed  CAS  Google Scholar 

  100. Ramsey HE, Da Silva CG, Longo CR, Csizmadia E, Studer P, Patel VI, Damrauer SM, Siracuse JJ, Daniel S, Ferran C. A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-alpha expression. Liver Transpl 2009; 15:1613–21; PMID:19877201; http://dx.doi.org/10.1002/lt.21879.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rakhshandehroo M, Knoch B, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010;2010.

    Google Scholar 

  102. Farrell GC Probing Prometheus: fat fueling the fire? Hepatology 2004; 40:1252–5; PMID:15558710; http://dx.doi.org/10.1002/hep.20522.

    Article  CAS  PubMed  Google Scholar 

  103. Boshra V, Moustafa AM. Retraction note: Effect of preischemic treatment with fenofibrate, a peroxisome proliferator-activated receptor-α ligand, on hepatic ischemia-reperfusion injury in rats. J Mol Histol 2013; 44:495; PMID:23666462; http://dx.doi.org/10.1007/s10735-013-9509-4.

    Article  Google Scholar 

  104. Fausto N. Liver regeneration. J Hepatol 2000; 32(Suppl): 19–31; PMID:10728791; http://dx.doi.org/10.1016/S0168-8278(00)80412-2.

    Article  CAS  PubMed  Google Scholar 

  105. de Jonge J, Kurian S, Shaked A, et al. Unique early gene expression patterns in human adult-to-adult living donor liver grafts compared to deceased donor grafts. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. Apr 2009;9(4):758–772.

    Article  CAS  Google Scholar 

  106. Longo CR, Patel VI, Shrikhande GV, Scali ST, Csizmadia E, Daniel S, Sun DW, Grey ST, Arvelo MB, Ferran C. A20 protects mice from lethal radical hepatectomy by promoting hepatocyte proliferation via a p21waf1-dependent mechanism. Hepatology 2005; 42:156–64; PMID:15962316; http://dx.doi.org/10.1002/hep.20741.

    Article  CAS  PubMed  Google Scholar 

  107. da Silva CG, Studer P, Skroch M, Mahiou J, Minussi DC, Peterson CR, Wilson SW, Patel VI, Ma A, Csizmadia E, et al. A20 promotes liver regeneration by decreasing SOCS3 expression to enhance IL-6/STAT3 proliferative signals. Hepatology 2013; 57:2014–25; PMID:23238769; http://dx.doi.org/10.1002/hep.26197.

    Article  PubMed  CAS  Google Scholar 

  108. Patel VI, Daniel S, Longo CR, et al. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. Jul 2006;20(9):1418–1430.

    Article  CAS  Google Scholar 

  109. Riehle KJ, Campbell JS, McMahan RS, Johnson MM, Beyer RP, Bammler TK, Fausto N. Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3. J Exp Med 2008; 205:91–103; PMID:18158318; http://dx.doi.org/10.1084/jem.20070820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y, Koga K, Takaesu G, Maehara Y, Iida M, et al. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 2006; 131:179–93; PMID:16831601; http://dx.doi.org/10.1053/j.gastro.2006.04.025.

    Article  CAS  PubMed  Google Scholar 

  111. Siracuse JJ, Fisher MD, da Silva CG, Peterson CR, Csizmadia E, Moll HP, Damrauer SM, Studer P, Choi LY, Essayagh S, et al. A20-mediated modulation of inflammatory and immune responses in aortic allografts and development of transplant arteriosclerosis. Transplantation 2012; 93:373–82; PMID:22245872; http://dx.doi.org/10.1097/TP.0b013e3182419829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med 1999; 190:1135–46; PMID:10523611; http://dx.doi.org/10.1084/jem.190.8.1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Daniel S, Patel VI, Shrikhande GV, Scali ST, Ramsey HE, Csizmadia E, Benhaga N, Fisher MD, Arvelo MB, Ferran C. The universal NF-kappaB inhibitor a20 protects from transplant vasculopathy by differentially affecting apoptosis in endothelial and smooth muscle cells. Transplant Proc 2006; 38:3225–7; PMID:17175229; http://dx.doi.org/10.1016/j.transproceed.2006.10.167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lutz J, Luong A, Strobl M, Deng M, Huang H, Anton M, Zakkar M, Enesa K, Chaudhury H, Haskard DO, et al. The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing proinflammatory activation. J Mol Med (Berl) 2008; 86:1329–39; PMID:18813897; http://dx.doi.org/10.1007/s00109-008-0405-4.

    Article  CAS  Google Scholar 

  115. Zhang A, Zhang M, Wang Y, Xie H, Zheng S. Calcitriol prolongs recipient survival by inducing expression of zinc-finger protein A20 and inhibiting its downstream gene following rat orthotopic liver transplantation. Immunopharmacol Immunotoxicol 2006; 28:591–600; PMID:17190736; http://dx.doi.org/10.1080/08923970601067003.

    Article  CAS  PubMed  Google Scholar 

  116. Xu MQ, Yan LN, Gou XH, Li DH, Huang YC, Hu HY, Wang LY, Han L. Zinc finger protein A20 promotes regeneration of small-for-size liver allograft and suppresses rejection and results in a longer survival in recipient rats. J Surg Res 2009; 152:35–45; PMID:19027921; http://dx.doi.org/10.1016/j.jss.2008.04.029.

    Article  CAS  PubMed  Google Scholar 

  117. Yang J, Xu MQ, Yan LN, Chen XB, Liu J. Zinc finger protein A20 protects rats against chronic liver allograft dysfunction. World J Gastroenterol 2012; 18:3537–50; PMID:22826618; http://dx.doi.org/10.3748/wjg.v18.i27.3537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Damrauer SM, Studer P, da Silva CG, Longo CR, Ramsey HE, Csizmadia E, Shrikhande GV, Scali ST, Libermann TA, Bhasin MK, et al. A20 modulates lipid metabolism and energy production to promote liver regeneration. PLoS One 2011; 6:e17715; PMID:21437236; http://dx.doi.org/10.1371/journal.pone.0017715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu MQ, Yan LN, Gou XH, Li DH, Huang YC, Hu HY, Wang LY, Han L. Zinc finger protein A20 promotes regeneration of small-for-size liver allograft and suppresses rejection and results in a longer survival in recipient rats. J Surg Res 2009; 152:35–45; PMID:19027921; http://dx.doi.org/10.1016/j.jss.2008.04.029.

    Article  CAS  PubMed  Google Scholar 

  120. Xu MQ, Yao ZX. Functional changes of dendritic cells derived from allogeneic partial liver graft undergoing acute rejection in rats. World J Gastroenterol 2003; 9:141–7; PMID:12508370.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Boonyasrisawat W, Eberle D, Bacci S, Zhang YY, Nolan D, Gervino EV, Johnstone MT, Trischitta V, Shoelson SE, Doria A. Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes 2007; 56:499–505; PMID:17259397; http://dx.doi.org/10.2337/db06-0946.

    Article  CAS  PubMed  Google Scholar 

  122. Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, Bates JS, Hu Y, Kelly JA, Kaufman KM, et al.; BIOLUPUS and GENLES Networks. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet 2011; 43:253–8; PMID:21336280; http://dx.doi.org/10.1038/ng.766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bates JS, Lessard CJ, Leon JM, Nguyen T, Battiest LJ, Rodgers J, Kaufman KM, James JA, Gilkeson GS, Kelly JA, et al. Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun 2009; 10:470–7; PMID:19387456; http://dx.doi.org/10.1038/gene.2009.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, Burtt NP, Guiducci C, Parkin M, Gates C, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40:1059–61; PMID:19165918; http://dx.doi.org/10.1038/ng.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Ferran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

da Silva, C.G., Cervantes, J.R., Studer, P., Ferran, C. (2014). A20-An Omnipotent Protein in the Liver: Prometheus Myth Resolved?. In: Ferran, C. (eds) The Multiple Therapeutic Targets of A20. Advances in Experimental Medicine and Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0398-6_8

Download citation

Publish with us

Policies and ethics