Translational Studies of A20 in Atherosclerosis and Cardiovascular Disease

  • Fiona C. McGillicuddyEmail author
  • Herwig P. Moll
  • Samira Farouk
  • Scott M. Damrauer
  • Christiane Ferran
  • Muredach P. Reilly
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Cardiovascular disease (CVD) is the biggest killer in the Western World despite significant advances in understanding its molecular underpinnings. Chronic inflammation, the classical hallmark of atherogenesis is thought to play a key pathogenic role in the development of atherosclerotic lesions from initiation of fatty streaks to plaque rupture. Over-representation of mostly pro-inflammatory nuclear factor kappa B (NF-κB) target genes within atherosclerotic lesions has led to the common-held belief that excessive NF-κB activity promotes and aggravates atherogenesis. However, mouse models lacking various proteins involved in NF-κB signaling have often resulted in conflicting findings, fueling additional investigations to uncover the molecular involvement ofNF-κB and its target genes in atherogenesis. In this chapter we will review the role of the NF-κB-regulated, yet potent NF-κB inhibitory and anti-inflammatory gene A20/TNFAIP3 in atherogenesis, and highlight the potential use of its atheroprotective properties for the prevention and treatment of cardiovascular diseases.


Tumor Necrosis Factor Atherosclerotic Lesion Medial Smooth Muscle Cell Smooth Muscle Cell Apoptosis Failed Vein Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brugts JJ, Yetgin T, Hoeks SE, Gotto AM, Shepherd J, Westendorp RG, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ 2009; 338:b2376; PMID:19567909; Scholar
  2. 2.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 2013; 127:143–52; PMID:23283859; Scholar
  3. 3.
    Grobbee DE, Bots ML. Atherosclerotic disease regression with statins: studies using vascular markers. Int J Cardiol 2004; 96:447–59; PMID:15301899; Scholar
  4. 4.
    Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell 2001; 104:503–16; PMID:11239408; Scholar
  5. 5.
    Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006; 6:508–19; PMID:16778830; Scholar
  6. 6.
    Kwak BR, Mulhaupt F, Mach F. Atherosclerosis: anti-inflammatory and immunomodulatory activities of statins. Autoimmun Rev 2003; 2:332–8; PMID:14550874; Scholar
  7. 7.
    Glasser SP, Selwyn AP, Ganz P. Atherosclerosis: risk factors and the vascular endothelium. Am Heart J 1996; 131:379–84; PMID:8579037; Scholar
  8. 8.
    de Winther MP, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25:904–14; PMID:15731497; Scholar
  9. 9.
    Kanters E, Pasparakis M, Gijbels MJ, Vergouwe MN, Partouns-Hendriks I, Fijneman RJ, et al. Inhibition of NF-kappaB activation in macrophages increases atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003; 112:1176–85; PMID:14561702.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Levin MC, Jirholt P, Wramstedt A, Johansson ME, Lundberg AM, Trajkovska MG, et al. Rip2 deficiency leads to increased atherosclerosis despite decreased inflammation. Circ Res 2011; 109:1210–8; PMID:21959219; Scholar
  11. 11.
    Schreyer SA, Peschon JJ, LeBoeuf RC. Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J Biol Chem 1996; 271:26174–8; PMID:8824264; Scholar
  12. 12.
    Brånén L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2004; 24:2137–42; PMID:15345516; Scholar
  13. 13.
    Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells: a regulatory response to injury. Immunol Today 1997; 18:483–6; PMID:9357140; Scholar
  14. 14.
    Opipari AW Jr., Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265:14705–8; PMID:2118515.PubMedGoogle Scholar
  15. 15.
    Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4; PMID:11009421; Scholar
  16. 16.
    Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O’Rourke K, et al. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 1990; 265:2973–8; PMID:2406243.PubMedGoogle Scholar
  17. 17.
    Patel VI, Daniel S, Longo CR, Shrikhande GV, Scali ST, Czismadia E, et al. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J 2006; 20:1418–30; PMID:16816117; Scholar
  18. 18.
    Shrikhande GV, Scali ST, da Silva CG, Damrauer SM, Csizmadia E, Putheti P, et al. O-glycosylation regulates ubiquitination and degradation of the anti-inflammatory protein A20 to accelerate atherosclerosis in diabetic ApoE-null mice. PLoS One 2010; 5:e14240; PMID:21151899; Scholar
  19. 19.
    Siracuse JJ, Fisher MD, da Silva CG, Peterson CR, Csizmadia E, Moll HP, et al. A20-mediated modulation of inflammatory and immune responses in aortic allografts and development of transplant arteriosclerosis. Transplantation 2012; 93:373–82; PMID:22245872; Scholar
  20. 20.
    Li HL, Zhuo ML, Wang D, Wang AB, Cai H, Sun LH, et al. Targeted cardiac overexpression of A20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation 2007; 115:1885–94; PMID:17389268; Scholar
  21. 21.
    Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 1995; 9:899–909; PMID:7542214.PubMedGoogle Scholar
  22. 22.
    Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18:2195–224; PMID:15371334; Scholar
  23. 23.
    Kim W, Hudson BI, Moser B, Guo J, Rong LL, Lu Y, et al. Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann N Y Acad Sci 2005; 1043:553–61; PMID:16037278; Scholar
  24. 24.
    Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007; 8:49–62; PMID:17183360; Scholar
  25. 25.
    Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity-and diet-induced insulin resistance. Int J Obes Relat Metab Disord 2003; 27(Suppl 3):S49–52; PMID:14704745; Scholar
  26. 26.
    Wilson SH, Caplice NM, Simari RD, Holmes DR Jr., Carlson PJ, Lerman A. Activated nuclear factor-kappaB is present in the coronary vasculature in experimental hypercholesterolemia. Atherosclerosis 2000; 148:23–30; PMID:10580167; Scholar
  27. 27.
    Monaco C, Paleolog E. Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc Res 2004; 61:671–82; PMID:14985064; Scholar
  28. 28.
    Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 1996; 97:1715–22; PMID:8601637; Scholar
  29. 29.
    Kawai T, Akira S. TLR signaling. Cell Death Differ 2006; 13:816–25; PMID:16410796; Scholar
  30. 30.
    Ghosh S, Hayden MS. Celebrating 25 years of NF-κB research. Immunol Rev 2012; 246:5–13; PMID:22435544; Scholar
  31. 31.
    Higashimori M, Tatro JB, Moore KJ, Mendelsohn ME, Galper JB, Beasley D. Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31:50–7; PMID:20966403; Scholar
  32. 32.
    Michelsen KS, Wong MH, Shah PK, Zhang W, Yano J, Doherty TM, et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A 2004; 101:10679–84; PMID:15249654; Scholar
  33. 33.
    Kirii H, Niwa T, Yamada Y, Wada H, Saito K, Iwakura Y, et al. Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2003; 23:656–60; PMID:12615675; Scholar
  34. 34.
    Chi H, Messas E, Levine RA, Graves DT, Amar S. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation 2004; 110:1678–85; PMID:15353494; Scholar
  35. 35.
    Wolfrum S, Teupser D, Tan M, Chen KY, Breslow JL. The protective effect of A20 on atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-kappaB target genes. Proc Natl Acad Sci U S A 2007; 104:18601–6; PMID:18006655; Scholar
  36. 36.
    Lutgens E, Lievens D, Beckers L, Wijnands E, Soehnlein O, Zernecke A, et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010; 207:391–404; PMID:20100871; Scholar
  37. 37.
    Caligiuri G, Rudling M, Ollivier V, Jacob MP, Michel JB, Hansson GK, et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 2003; 9:10–7; PMID:12765335.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85:e17–24; PMID:10521249; Scholar
  39. 39.
    Von Der Thüsen JH, Kuiper J, Fekkes ML, De Vos P, Van Berkel TJ, Biessen EA. Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr−/− mice. FASEB J 2001; 15:2730–2; PMID:11687507.Google Scholar
  40. 40.
    Klinkenberg M, Van Huffel S, Heyninck K, Beyaert R. Functional redundancy of the zinc fingers of A20 for inhibition of NF-kappaB activation and protein-protein interactions. FEBS Lett 2001; 498:93–7; PMID:11389905; Scholar
  41. 41.
    Daniel S, Arvelo MB, Patel VI, Longo CR, Shrikhande G, Shukri T, et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 2004; 104:2376–84; PMID:15251990; Scholar
  42. 42.
    Heyninck K, Beyaert R. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem Sci 2005; 30:1–4; PMID:15653317; Scholar
  43. 43.
    De Valck D, Heyninck K, Van Criekinge W, Contreras R, Beyaert R, Fiers W. A20, an inhibitor of cell death, self-associates by its zinc finger domain. FEBS Lett 1996; 384:61–4; PMID:8797804; Scholar
  44. 44.
    Kunter U, Floege J, von Jürgensonn AS, Stojanovic T, Merkel S, Gröne HJ, et al. Expression of A20 in the vessel wall of rat-kidney allografts correlates with protection from transplant arteriosclerosis. Transplantation 2003; 75:3–9; PMID:12544863; Scholar
  45. 45.
    Li HL, Wang AB, Zhang R, Wei YS, Chen HZ, She ZG, et al. A20 inhibits oxidized low-density lipoprotein-induced apoptosis through negative Fas/Fas ligand-dependent activation of caspase-8 and mitochondrial pathways in murine RAW264.7 macrophages. J Cell Physiol 2006; 208:307–18; PMID:16646083; Scholar
  46. 46.
    Sun L, Chen ZJ. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 2004; 16:119–26; PMID:15196553; Scholar
  47. 47.
    Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5:1052–60; PMID:15334086; Scholar
  48. 48.
    Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60:1143–51; PMID:11007952; Scholar
  49. 49.
    Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C. A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996; 271:18068–73; PMID:8663499; Scholar
  50. 50.
    Longo CR, Arvelo MB, Patel VI, Daniel S, Mahiou J, Grey ST, et al. A20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis. Circulation 2003; 108:1113–8; PMID:12885753; Scholar
  51. 51.
    Turer EE, Tavares RM, Mortier E, Hitotsumatsu O, Advincula R, Lee B, et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J Exp Med 2008; 205:451–64; PMID:18268035; Scholar
  52. 52.
    Coornaert B, Carpentier I, Beyaert R. A20: central gatekeeper in inflammation and immunity. J Biol Chem 2009; 284:8217–21; PMID:19008218; Scholar
  53. 53.
    Silverman N, Fitzgerald K. DUBbing down innate immunity. Nat Immunol 2004; 5:1010–2; PMID:15454928; Scholar
  54. 54.
    Pearson JD. Normal endothelial cell function. Lupus 2000; 9:183–8; PMID:10805485; Scholar
  55. 55.
    Lüscher TF, Noll G. Endothelium dysfunction in the coronary circulation. J Cardiovasc Pharmacol 1994; 24(Suppl 3):S16–26; PMID:7700060.PubMedGoogle Scholar
  56. 56.
    Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 1988; 58:249–61; PMID:3279259.PubMedGoogle Scholar
  57. 57.
    Scott-Burden T, Vanhoutte PM. Regulation of smooth muscle cell growth by endothelium-derived factors. Tex Heart Inst J 1994; 21:91–7; PMID:8180516.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Libby P. Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res 2009; 50(Suppl):S352–7; PMID:19096046; Scholar
  59. 59.
    Longo CR, Patel VI, Shrikhande GV, Scali ST, Csizmadia E, Daniel S, et al. A20 protects mice from lethal radical hepatectomy by promoting hepatocyte proliferation via a p21waf1-dependent mechanism. Hepatology 2005; 42:156–64; PMID:15962316; Scholar
  60. 60.
    Daniel S, Patel VI, Shrikhande GV, Scali ST, Ramsey HE, Csizmadia E, et al. The universal NF-kappaB inhibitor a20 protects from transplant vasculopathy by differentially affecting apoptosis in endothelial and smooth muscle cells. Transplant Proc 2006; 38:3225–7; PMID:17175229; Scholar
  61. 61.
    Ruberg FL, Leopold JA, Loscalzo J. Atherothrombosis: plaque instability and thrombogenesis. Prog Cardiovasc Dis 2002; 44:381–94; PMID:12024336; Scholar
  62. 62.
    Cirino G, Fiorucci S, Sessa WC. Endothelial nitric oxide synthase: the Cinderella of inflammation? Trends Pharmacol Sci 2003; 24:91–5; PMID:12559774; Scholar
  63. 63.
    Connelly L, Palacios-Callender M, Ameixa C, Moncada S, Hobbs AJ. Biphasic regulation of NF-κ B activity underlies the pro-and anti-inflammatory actions of nitric oxide. J Immunol 2001; 166:3873–81; PMID:11238631.PubMedCrossRefGoogle Scholar
  64. 64.
    Jeremy JY, Rowe D, Emsley AM, Newby AC. Nitric oxide and the proliferation of vascular smooth muscle cells. Cardiovasc Res 1999; 43:580–94; PMID:10690330; Scholar
  65. 65.
    Iwashina M, Shichiri M, Marumo F, Hirata Y. Transfection of inducible nitric oxide synthase gene causes apoptosis in vascular smooth muscle cells. Circulation 1998; 98:1212–8; PMID:9743513; Scholar
  66. 66.
    Wang GR, Zhu Y, Halushka PV, Lincoln TM, Mendelsohn ME. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci U S A 1998; 95:4888–93; PMID:9560198; Scholar
  67. 67.
    Liu JW, Dunoyer-Geindre S, Blot-Chabaud M, Sabatier F, Fish RJ, Bounameaux H, et al. Generation of human inflammation-resistant endothelial progenitor cells by A20 gene transfer. J Vasc Res 2010; 47:157–67; PMID:19851077; Scholar
  68. 68.
    Rekhter MD, Gordon D. Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am J Pathol 1995; 147:668–77; PMID:7677178.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res 1999; 41:361–8; PMID:10341835; Scholar
  70. 70.
    Rembold C. Could atherosclerosis originate from defective smooth muscle cell death (apoptosis)? Perspect Biol Med 1996; 39:405–8; PMID:8657553.PubMedGoogle Scholar
  71. 71.
    Pollman MJ, Hall JL, Mann MJ, Zhang L, Gibbons GH. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998; 4:222–7; PMID:9461197; Scholar
  72. 72.
    Suzuki JI, Isobe M, Morishita R, Nishikawa T, Amano J, Kaneda Y. Antisense Bcl-x oligonucleotide induces apoptosis and prevents arterial neointimal formation in murine cardiac allografts. Cardiovasc Res 2000; 45:783–7; PMID:10728401; Scholar
  73. 73.
    Wang AB, Li HL, Zhang R, She ZG, Chen HZ, Huang Y, et al. A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J Biomed Sci 2007; 14:357–71; PMID:17260188; Scholar
  74. 74.
    Tullius SG, Tilney NL. Both alloantigen-dependent and-independent factors influence chronic allograft rejection. Transplantation 1995; 59:313–8; PMID:7871557.PubMedCrossRefGoogle Scholar
  75. 75.
    Avihingsanon Y, Ma N, Csizmadia E, Wang C, Pavlakis M, Giraldo M, et al. Expression of protective genes in human renal allografts: a regulatory response to injury associated with graft rejection. Transplantation 2002; 73:1079–85; PMID:11965035; Scholar
  76. 76.
    Wajchenberg BL. beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007; 28:187–218; PMID:17353295; Scholar
  77. 77.
    Boonyasrisawat W, Eberle D, Bacci S, Zhang YY, Nolan D, Gervino EV, et al. Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes 2007; 56:499–505; PMID:17259397; Scholar
  78. 78.
    Biddinger SB, Hernandez-Ono A, Rask-Madsen C, Haas JT, Alemán JO, Suzuki R, et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab 2008; 7:125–34; PMID:18249172; Scholar
  79. 79.
    Damrauer SM, Studer P, da Silva CG, Longo CR, Ramsey HE, Csizmadia E, et al. A20 modulates lipid metabolism and energy production to promote liver regeneration. PLoS One 2011; 6:e17715; PMID:21437236; Scholar
  80. 80.
    Hansson GK. Inflammatory mechanisms in atherosclerosis. J Thromb Haemost 2009; 7(Suppl 1):328–31; PMID:19630827; Scholar
  81. 81.
    Anderson PD, Mehta NN, Wolfe ML, Hinkle CC, Pruscino L, Comiskey LL, et al. Innate immunity modulates adipokines in humans. J Clin Endocrinol Metab 2007; 92:2272–9; PMID:17374708; Scholar
  82. 82.
    Lehrke M, Millington SC, Lefterova M, Cumaranatunge RG, Szapary P, Wilensky R, et al. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J Am Coll Cardiol 2007; 49:442–9; PMID:17258089; Scholar
  83. 83.
    Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes 2010; 59:172–81; PMID:19794059; Scholar
  84. 84.
    Shah R, Lu Y, Hinkle CC, McGillicuddy FC, Kim R, Hannenhalli S, et al. Gene profiling of human adipose tissue during evoked inflammation in vivo. Diabetes 2009; 58:2211–9; PMID:19581417; Scholar
  85. 85.
    Faxon DP, Creager MA, Smith SC Jr., Pasternak RC, Olin JW, Bettmann MA, et al.; American Heart Association. Atherosclerotic Vascular Disease Conference: Executive summary: Atherosclerotic Vascular Disease Conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation 2004; 109:2595–604; PMID:15173041; Scholar
  86. 86.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54:1615–25; PMID:15919781; Scholar
  87. 87.
    Boullier A, Bird DA, Chang MK, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci. Dec 2001;947:214–222; discussion 222-213.CrossRefGoogle Scholar
  88. 88.
    Heermeier K, Leicht W, Palmetshofer A, Ullrich M, Wanner C, Galle J. Oxidized LDL suppresses NF-kappaB and overcomes protection from apoptosis in activated endothelial cells. J Am Soc Nephrol 2001; 12:456–63; PMID:11181793.PubMedGoogle Scholar
  89. 89.
    Shaw J, Eydelnant IA, Kirshenbaum LA. Transgenic expression of A20 prevents cardiac cell death and myocardial dysfunction after myocardial infarction. Circulation 2007; 115:1827–9; PMID:17420361; Scholar
  90. 90.
    Huang H, Tang QZ, Wang AB, Chen M, Yan L, Liu C, et al. Tumor suppressor A20 protects against cardiac hypertrophy and fibrosis by blocking transforming growth factor-beta-activated kinase 1-dependent signaling. Hypertension 2010; 56:232–9; PMID:20585109; Scholar
  91. 91.
    Yu L, Miao H, Hou Y, Zhang B, Guo L. Neuroprotective effect of A20 on TNF-induced postischemic apoptosis. Neurochem Res 2006; 31:21–32; PMID:16474993.PubMedCrossRefGoogle Scholar
  92. 92.
    Idel S, Dansky HM, Breslow JL. A20, a regulator of NFkappaB, maps to an atherosclerosis locus and differs between parental sensitive C57BL/6J and resistant FVB/N strains. Proc Natl Acad Sci USA 2003; 100:14235–40; PMID:14614151; Scholar
  93. 93.
    Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 2003; 59:234–40; PMID:12829194; Scholar
  94. 94.
    Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005; 115:3149–56; PMID:16211093; Scholar
  95. 95.
    Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 2011; 43:339–44; PMID:21378988; Scholar
  96. 96.
    Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al.; Cardiogenics; CARDIoGRAM Consortium. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011; 43:333–8; PMID:21378990; Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2014

Authors and Affiliations

  • Fiona C. McGillicuddy
    • 1
    • 4
    Email author
  • Herwig P. Moll
    • 2
  • Samira Farouk
    • 1
  • Scott M. Damrauer
    • 2
    • 3
  • Christiane Ferran
    • 2
  • Muredach P. Reilly
    • 1
  1. 1.Cardiovascular Institute and Institute for Translational Medicine and TherapeuticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant InstituteBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  3. 3.Division of Vascular Surgery and Endovascular TherapyUniversity of Pennsylvania Medical CenterPhiladelphiaUSA
  4. 4.Nutrigenomics Research Group, UCD Conway Institute, School of Public Health & Population ScienceUniversity College DublinDublinIreland

Personalised recommendations