Advertisement

The Biology of A20-Like Molecules

  • Karine Enesa
  • Paul Evans
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

A20 is a ubiquitin-editing molecule. It belongs to a novel family of deubiquitinating cysteine proteases, called the ovarian tumor (OTU) family, which can cleave monoubiquitin from modified proteins. In addition, A20 contains seven Cys2-Cys2 zinc fingers, one of which is believed to regulate E3 ubiquitin ligase activity. Here we review the biology of human genes that encode OTU domains or contain A20-type zinc fingers. The human genome contains 15 members of the OTU family including the deubiquitinating enzymes Cezanne, VCIP135 and Otubain 1. Genomic analysis also identified 10 genes that contain A20-type zinc fingers including Rabex5, Znf216 and AWP1. In Rabex5 the A20-zinc finger regulates E3 ligase activity whereas A20-type zinc fingers of Znf216 and AWP1 function as ubiquitin-binding motifs. A20 and its relatives regulate highly divergent physiological activities including NF-κB activity (A20, Cezanne, Znf216, Rabex5), endocytosis (Rabex5, AWP1), skeletal muscle atrophy (Znf216), Golgi membrane fusion (VCIP135) and T-cell anergy (Otubain 1). Further studies are required to characterize the biology of other A20-related molecules whose function remains largely undefined.

Keywords

Zinc Finger Epithelial Growth Factor Receptor Protease Domain Polyubiquitin Chain Deubiquitinating Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 2004; 1695:55–72; PMID:15571809; http://dx.doi.org/10.1016/j.bbamcr.2004.09.019.PubMedCrossRefGoogle Scholar
  2. 2.
    Evans PC. Regulation of pro-inflammatory signalling networks by ubiquitin: identification of novel targets for anti-inflammatory drugs. Expert Rev Mol Med 2005; 7:1–19; PMID:15967057; http://dx.doi.org/10.1017/S1462399405009415.PubMedCrossRefGoogle Scholar
  3. 3.
    Sigismund S, Polo S, Di Fiore PP. Signaling through monoubiquitination. Curr Top Microbiol Immunol 2004; 286:149–85; PMID:15645713.PubMedGoogle Scholar
  4. 4.
    Höller D, Dikic I. Receptor endocytosis via ubiquitin-dependent and-independent pathways. Biochem Pharmacol 2004; 67:1013–7; PMID:15006537; http://dx.doi.org/10.1016/j.bcp.2004.01.003.PubMedCrossRefGoogle Scholar
  5. 5.
    Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 2003; 5:461–6; PMID:12717448; http://dx.doi.org/10.1038/ncb983.PubMedCrossRefGoogle Scholar
  6. 6.
    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373–428; PMID:11917093.PubMedGoogle Scholar
  7. 7.
    Emmerich CH, Schmukle AC, Walczak H. The emerging role of linear ubiquitination in cell signaling. Sci Signal 2011; 4:re5; PMID:22375051; http://dx.doi.org/10.1126/scisignal.2002187.PubMedCrossRefGoogle Scholar
  8. 8.
    Schmukle AC, Walczak H. No one can whistle a symphony alone — how different ubiquitin linkages cooperate to orchestrate NF-kB activity. J Cell Sci 2012; 125:549–59; PMID:22389394; http://dx.doi.org/10.1242/jcs.091793.PubMedCrossRefGoogle Scholar
  9. 9.
    Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, et al. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 2004; 15:535–48; PMID:15327770; http://dx.doi.org/10.1016/j.molcel.2004.08.008.PubMedCrossRefGoogle Scholar
  10. 10.
    Di Fiore PP, Polo S, Hofmann K. When ubiquitin meets ubiquitin receptors: a signalling connection. Nat Rev Mol Cell Biol 2003; 4:491–7; PMID:12778128; http://dx.doi.org/10.1038/nrm1124.PubMedCrossRefGoogle Scholar
  11. 11.
    Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 2003; 19:141–72; PMID:14570567; http://dx.doi.org/10.1146/annurev.cellbio.19.110701.154617.PubMedCrossRefGoogle Scholar
  12. 12.
    Naramura M, Jang IK, Kole H, Huang F, Haines D, Gu H. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 2002; 3:1192–9; PMID:12415267; http://dx.doi.org/10.1038/ni855.PubMedCrossRefGoogle Scholar
  13. 13.
    Gesbert F, Malardé V, Dautry-Varsat A. Ubiquitination of the common cytokine receptor gammac and regulation of expression by anubiquitination/deubiquitinationmachinery. Biochem Biophys Res Commun 2005; 334:474–80; PMID:16004964; http://dx.doi.org/10.1016/j.bbrc.2005.06.121.PubMedCrossRefGoogle Scholar
  14. 14.
    Duncan LM, Piper S, Dodd RB, Saville MK, Sanderson CM, Luzio JP, et al. Lysine-63-linked ubiquitination is requiredforendolysosomal degradation of class Imolecules. EMBOJ 2006; 25:1635–45; PMID:16601694; http://dx.doi.org/10.1038/sj.emboj.7601056.CrossRefGoogle Scholar
  15. 15.
    Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18:2195–224; PMID:15371334; http://dx.doi.org/10.1101/gad.1228704.PubMedCrossRefGoogle Scholar
  16. 16.
    Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13:1015–24; PMID:10215628; http://dx.doi.org/10.1101/gad.13.8.1015.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen ZJ, Bhoj V, Seth RB. Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 2006; 13:687–92; PMID:16485032; http://dx.doi.org/10.1038/sj.cdd.4401869.PubMedCrossRefGoogle Scholar
  18. 18.
    Deng L, Wang C, Spencer E, Yang L, Braun A, You J, et al. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and aunique polyubiquitin chain. Cell 2000; 103:351–61; PMID:11057907; http://dx.doi.org/10.1016/S0092-8674(00)00126-4.PubMedCrossRefGoogle Scholar
  19. 19.
    Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNF alpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22:245–57; PMID:16603398; http://dx.doi.org/10.1016/j.molcel.2006.03.026.PubMedCrossRefGoogle Scholar
  20. 20.
    Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694–9; PMID:15258597; http://dx.doi.org/10.1038/nature02794.PubMedCrossRefGoogle Scholar
  21. 21.
    Tang ED, Wang CY, Xiong Y, Guan KL. A role for NF-kappaB essential modifier/IkappaB kinase-gamma (NEMO/IKKgamma) ubiquitination in the activation of the IkappaB kinase complex by tumor necrosis factor-alpha. J Biol Chem 2003; 278:37297–305; PMID:12867425; http://dx.doi.org/10.1074/jbc.M303389200.PubMedCrossRefGoogle Scholar
  22. 22.
    Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005; 6:1087–95; PMID:16186825; http://dx.doi.org/10.1038/ni1255.PubMedCrossRefGoogle Scholar
  23. 23.
    Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 2003; 326:105–15; PMID:12547194; http://dx.doi.org/10.1016/S0022-2836(02)01404-3.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 isaubiquitin-dependentkinase of MKK and IKK. Nature 2001; 412:346–51; PMID:11460167; http://dx.doi.org/10.1038/35085597.PubMedCrossRefGoogle Scholar
  25. 25.
    Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011; 471:591–6; PMID:21455173; http://dx.doi.org/10.1038/nature09816.PubMedCrossRefGoogle Scholar
  26. 26.
    Tokunaga F, Iwai K. [Involvement of LUBAC-mediated linear polyubiquitination of NEMO in NF-kappaB activation]. Tanpakushitsu Kakusan Koso 2009; 54:635–42; PMID:19348259.PubMedGoogle Scholar
  27. 27.
    Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, et al. Involvement of linearpolyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 2009; 11:123–32; PMID:19136968; http://dx.doi.org/10.1038/ncb1821.PubMedCrossRefGoogle Scholar
  28. 28.
    Hostager BS, Kashiwada M, Colgan JD, Rothman PB. HOIL-1L interacting protein (HOIP) is essential for CD40 signaling. PLoS One 2011; 6:e23061; PMID:21829693; http://dx.doi.org/10.1371/journal.pone.0023061.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, et al. SHARPIN forms a linear ubiquitin ligase complex regulating NF-kB activity and apoptosis. Nature 2011; 471:637–41; PMID:21455181; http://dx.doi.org/10.1038/nature09814.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004; 1695:189–207; PMID:15571815; http://dx.doi.org/10.1016/j.bbamcr.2004.10.003.PubMedCrossRefGoogle Scholar
  31. 31.
    Cummins JM, Vogelstein B. HAUSP is required for p53 destabilization. Cell Cycle 2004; 3:689–92; PMID:15118411; http://dx.doi.org/10.4161/cc.3.6.924.PubMedCrossRefGoogle Scholar
  32. 32.
    Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, et al. Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 2007; 446:876–81; PMID:17443180; http://dx.doi.org/10.1038/nature05694.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen X, Zhang B, Fischer JA. A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. Genes Dev 2002; 16:289–94; PMID:11825870; http://dx.doi.org/10.1101/gad.961502.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Makarova KS, Aravind L, Koonin EV. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 2000; 25:50–2; PMID:10664582; http://dx.doi.org/10.1016/S0968-0004(99)01530-3.PubMedCrossRefGoogle Scholar
  35. 35.
    Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, et al. A novel type of deubiquitinating enzyme. J Biol Chem 2003; 278:23180–6; PMID:12682062; http://dx.doi.org/10.1074/jbc.M301863200.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang Y, Satoh A, Warren G, Meyer HH. VCIP135 acts as a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments. J Cell Biol 2004; 164:973–8; PMID:15037600; http://dx.doi.org/10.1083/jcb.200401010.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–25; PMID:3447015.PubMedGoogle Scholar
  38. 38.
    Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 2002; 9:1149–59; PMID:12401499; http://dx.doi.org/10.1016/S1074-5521(02)00248-X.PubMedCrossRefGoogle Scholar
  39. 39.
    Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 2003; 4:517–22; PMID:12704427; http://dx.doi.org/10.1038/sj.embor.embor824.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S, et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378:727–34; PMID:14748687; http://dx.doi.org/10.1042/BJ20031377.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Evans PC, Taylor ER, Coadwell J, Heyninck K, Beyaert R, Kilshaw PJ. Isolation and characterization of two novel A20-like proteins. Biochem J 2001; 357:617–23; PMID:11463333; http://dx.doi.org/10.1042/0264-6021:3570617.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Uchiyama K, Jokitalo E, Kano F, Murata M, Zhang X, Canas B, et al. VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J Cell Biol 2002; 159:855–66; PMID:12473691; http://dx.doi.org/10.1083/jcb.200208112.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, et al. The ubiquitin-modifying enzyme A20 is requiredfortermination of Toll-likereceptorresponses. Nat Immunol 2004; 5:1052–60; PMID:15334086; http://dx.doi.org/10.1038/ni1110.PubMedCrossRefGoogle Scholar
  44. 44.
    Bremm A, Freund SM, Komander D. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Nat Struct Mol Biol 2010; 17:939–47; PMID:20622874; http://dx.doi.org/10.1038/nsmb.1873.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Enesa K, Zakkar M, Chaudhury H, Luong A, Rawlinson L, Mason JC, et al. NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283:7036–45; PMID:18178551; http://dx.doi.org/10.1074/jbc.M708690200.PubMedCrossRefGoogle Scholar
  46. 46.
    McNally RS, Davis BK, Clements CM, Accavitti-Loper MA, Mak TW, Ting JP. DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-kappaB. J Biol Chem 2011; 286:4098–106; PMID:21097510; http://dx.doi.org/10.1074/jbc.M110.147371.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pareja F, Ferraro DA, Rubin C, Cohen-Dvashi H, Zhang F, Aulmann S, et al. Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 2011; 19; PMID:22179831.Google Scholar
  48. 48.
    Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, Virdee S, et al. An ankyrin-repeat ubiquitin-binding domain determines TRABID’s specificity for atypical ubiquitin chains. Nat Struct Mol Biol 2012; 19:62–71; PMID:22157957; http://dx.doi.org/10.1038/nsmb.2169.CrossRefGoogle Scholar
  49. 49.
    Tran H, Hamada F, Schwarz-Romond T, Bienz M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22:528–42; PMID:18281465; http://dx.doi.org/10.1101/gad.463208.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Uchiyama K, Kondo H. p97/p47-Mediated biogenesis of Golgi and ER. J Biochem 2005; 137:115–9; PMID:15749824; http://dx.doi.org/10.1093/jb/mvi028.PubMedCrossRefGoogle Scholar
  51. 51.
    Meyer HH. Golgi reassembly after mitosis: the AAA family meets the ubiquitin family. Biochim Biophys Acta 2005; 1744:108–19; PMID:15878210; http://dx.doi.org/10.1016/j.bbamcr.2005.03.011.PubMedCrossRefGoogle Scholar
  52. 52.
    Wójcik C, Rowicka M, Kudlicki A, Nowis D, McConnell E, Kujawa M, et al. Valosin-containing protein (p97) is aregulator of endoplasmic reticulum stress and of the degradation of N-endrule and ubiquitin-fusion degradation pathway substrates in mammalian cells. Mol Biol Cell 2006; 17:4606–18; PMID:16914519; http://dx.doi.org/10.1091/mbc.E06-05-0432.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yano M, Kanesaki Y, Koumoto Y, Inoue M, Kido H. Chaperone activities ofthe 26S and 20S proteasome. Curr Protein Pept Sci 2005; 6:197–203; PMID:15853655; http://dx.doi.org/10.2174/1389203053545453.PubMedCrossRefGoogle Scholar
  54. 54.
    Nanao MH, Tcherniuk SO, Chroboczek J, Dideberg O, Dessen A, Balakirev MY. Crystal structure of human otubain 2. EMBO Rep 2004; 5:783–8; PMID:15258613; http://dx.doi.org/10.1038/sj.embor.7400201.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Powell JD. The induction and maintenance of T cell anergy. Clin Immunol 2006; 120:239–46; PMID:16581297; http://dx.doi.org/10.1016/j.clim.2006.02.004.PubMedCrossRefGoogle Scholar
  56. 56.
    Mueller DL. E3 ubiquitin ligases as T cell anergy factors. Nat Immunol 2004; 5:883–90; PMID:15334084; http://dx.doi.org/10.1038/ni1106.PubMedCrossRefGoogle Scholar
  57. 57.
    Anandasabapathy N, Ford GS, Bloom D, Holness C, Paragas V, Seroogy C, et al. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 2003; 18:535–47; PMID:12705856; http://dx.doi.org/10.1016/S1074-7613(03)00084-0.PubMedCrossRefGoogle Scholar
  58. 58.
    Su L, Lineberry N, Huh Y, Soares L, Fathman CG. A novel E3 ubiquitin ligase substrate screen identifies Rho guanine dissociation inhibitor as a substrate of gene related to anergy in lymphocytes. J Immunol 2006; 177:7559–66; PMID:17114425.PubMedCrossRefGoogle Scholar
  59. 59.
    Soares L, Seroogy C, Skrenta H, Anandasabapathy N, Lovelace P, Chung CD, et al. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nat Immunol 2004; 5:45–54; PMID:14661020; http://dx.doi.org/10.1038/ni1017.PubMedCrossRefGoogle Scholar
  60. 60.
    Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, et al. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010; 466:941–6; PMID:20725033; http://dx.doi.org/10.1038/nature09297.PubMedCrossRefGoogle Scholar
  61. 61.
    Sun XX, Challagundla KB, Dai MS. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBOJ 2012; 31:576–92; PMID:22124327; http://dx.doi.org/10.1038/emboj.2011.434.Google Scholar
  62. 62.
    Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, et al. Regulation of virus-triggered signaling by OTUB1-and OTUB2-mediateddeubiquitination of TRAF3 and TRAF6.J Biol Chem 2010; 285:4291–7; PMID:19996094; http://dx.doi.org/10.1074/jbc.M109.074971.Google Scholar
  63. 63.
    Vij S, Tyagi AK. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 2006; 276:565–75; PMID:17033811; http://dx.doi.org/10.1007/s00438-006-0165-1.PubMedCrossRefGoogle Scholar
  64. 64.
    Woodman PG. Biogenesis of the sorting endosome: the role of Rab5. Traffic 2000; 1:695–701; PMID:11208157; http://dx.doi.org/10.1034/j.1600-0854.2000.010902.x.PubMedCrossRefGoogle Scholar
  65. 65.
    Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2:107–17; PMID:11252952; http://dx.doi.org/10.1038/35052055.PubMedCrossRefGoogle Scholar
  66. 66.
    Lippé R, Miaczynska M, Rybin V, Runge A, Zerial M. Functional synergy between Rab 5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol Biol Cell 2001; 12:2219–28; PMID:11452015.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 2006; 13:264–71; PMID:16462746; http://dx.doi.org/10.1038/nsmb1064.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Mattera R, Tsai YC, Weissman AM, Bonifacino JS. The Rab 5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and azinc finger domain. J Biol Chem 2006; 281:6874–83; PMID:16407276; http://dx.doi.org/10.1074/jbc.M509939200.PubMedCrossRefGoogle Scholar
  69. 69.
    Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 2006; 124:1183–95; PMID:16499958; http://dx.doi.org/10.1016/j.cell.2006.02.020.PubMedCrossRefGoogle Scholar
  70. 70.
    Diatchenko L, Romanov S, Malinina I, Clarke J, Tchivilev I, Li X, et al. Identification of novel mediators of NF-kappaB through genome-wide survey of monocyte adherence-induced genes. J Leukoc Biol 2005; 78:1366–77; PMID:16204640; http://dx.doi.org/10.1189/jlb.0405211.PubMedCrossRefGoogle Scholar
  71. 71.
    Huang J, Teng L, Li L, Liu T, Li L, Chen D, et al. ZNF216 Is an A20-like and IkappaB kinase gamma-interacting inhibitor of NFkappaB activation. J Biol Chem 2004; 279:16847–53; PMID:14754897; http://dx.doi.org/10.1074/jbc.M309491200.PubMedCrossRefGoogle Scholar
  72. 72.
    Hishiya A, Ikeda K, Watanabe K. A RANKL-inducible gene Znf216 in osteoclast differentiation. J Recept Signal Transduct Res 2005;25:199–216; PMID:16194934; http://dx.doi.org/10.1080/10799890500240781.PubMedCrossRefGoogle Scholar
  73. 73.
    Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005; 37:1974–84; PMID:16087388; http://dx.doi.org/10.1016/j.biocel.2005.04.018.PubMedCrossRefGoogle Scholar
  74. 74.
    Hishiya A, Iemura S, Natsume T, Takayama S, Ikeda K, Watanabe K. A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy. EMBO J 2006; 25:554–64; PMID:16424905; http://dx.doi.org/10.1038/sj.emboj.7600945.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Strachan J, Roach L, Sokratous K, Tooth D, Long J, Garner TP, et al. Insights into the molecular composition of endogenous unanchored polyubiquitin chains. J Proteome Res 2012; 11:1969–80; PMID:22268864; http://dx.doi.org/10.1021/pr201167n.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2014

Authors and Affiliations

  1. 1.Sir James Black CentreUniversity of DundeeDundeeUK
  2. 2.Department of Cardiovascular SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations