Advertisement

The Biology of A20-Binding Inhibitors of NF-κB Activation (ABINS)

  • Lynn Verstrepen
  • Isabelle Carpentier
  • Rudi Beyaert
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

The family of A20-Binding Inhibitors of NF-κB (ABINs) consists of three proteins, ABIN-1, ABIN-2 and ABIN-3, which were originally identified as A20-binding proteins and inhibitors of cytokines and Lipopolysaccharide (LPS) induced NF-κB activation. ABIN family members have limited sequence homology in a number of short regions that mediate A20-binding, ubiquitin-binding, and NF-κB inhibition. The functional role of A20 binding to ABINs remains unclear, although an adaptor function has been suggested. ABIN-1 and ABIN-3 expression is upregulated when cells are triggered by NF-κB-activating stimuli, suggesting a role for these ABINs in anegative feedbackregulation of NF-κB signaling. Additional ABIN functions have been reported such as inhibition of TNF-induced hepatocyte apoptosis, regulation of HIV-1 replication for ABIN-1, and Tumor Progression Locus 2 (TPL-2)-mediated Extracellular signal-Regulated Kinase (ERK) activation for ABIN-2. In mice, ABIN-1 overexpressionreduces allergic airway inflammation and TNF-mediated liver injury, ABIN-2 overexpression delays liver regeneration, and ABIN-3 overexpression partially protects against LPS-induced acute liver failure. Analysis of mice deficient in ABIN-1 or ABIN-2 demonstrates the important immune regulatory function of ABINs. Future studies should clarify the functional implication of the A20-ABIN interaction in supporting ABINs’ mechanisms of action.

Keywords

Human Immunodeficiency Virus Type Chromosomal Region Maintenance Adenoviral Gene Transfer Nemo Binding Domain Tumor Necrosis Factor Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karin M. The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 1999; 274:27339–42; PMID:10488062; http://dx.doi.org/10.1074/jbc.274.39.27339.PubMedCrossRefGoogle Scholar
  2. 2.
    Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 2006; 25:6680–4; PMID:17072321; http://dx.doi.org/10.1038/sj.onc.1209954.PubMedCrossRefGoogle Scholar
  3. 3.
    Hoffmann A, Natoli G, Ghosh G. Transcriptional regulation via the NF-kappaB signaling module. Oncogene 2006; 25:6706–16; PMID:17072323; http://dx.doi.org/10.1038/sj.onc.1209933.PubMedCrossRefGoogle Scholar
  4. 4.
    Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest 2001; 107:7–11; PMID:11134171; http://dx.doi.org/10.1172/JCI11830.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 2006; 25:6717–30; PMID:17072324; http://dx.doi.org/10.1038/sj.onc.1209937.PubMedCrossRefGoogle Scholar
  6. 6.
    Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60:1143–51; PMID:11007952; http://dx.doi.org/10.1016/S0006-2952(00)00404-4.PubMedCrossRefGoogle Scholar
  7. 7.
    Heyninck K, De Valck D, Vanden Berghe W, Van Criekinge W, Contreras R, Fiers W, et al. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP-or TRAF2-mediatedtransactivation signal and directly binds to anovelNF-kappaB-inhibitingproteinABIN. J Cell Biol 1999; 145:1471–82; PMID:10385526; http://dx.doi.org/10.1083/jcb.145.7.1471.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Heyninck K, Kreike MM, Beyaert R. Structure-function analysis of the A20-binding inhibitor of NF-kappa B activation, ABIN-1. FEBS Lett 2003; 536:135–40; PMID:12586352 http://dx.doi.org/10.1016/S0014-5793(03)00041-3.PubMedCrossRefGoogle Scholar
  9. 9.
    Wullaert A, Verstrepen L, Van Huffel S, Adib-Conquy M, Cornelis S, Kreike M, et al. LIND/ABIN-3 is a novel lipopolysaccharide-inducible inhibitor of NF-kappaB activation. J Biol Chem 2007; 282:81–90; PMID:17088249; http://dx.doi.org/10.1074/jbc.M607481200.PubMedCrossRefGoogle Scholar
  10. 10.
    Fukushi M, Dixon J, Kimura T, Tsurutani N, Dixon MJ, Yamamoto N. Identification and cloning of a novel cellular protein Naf1, Nef-associated factor 1, that increases cell surface CD4 expression. FEBS Lett 1999; 442:83–8; PMID:9923610; http://dx.doi.org/10.1016/S0014-5793(98)01631-7.PubMedCrossRefGoogle Scholar
  11. 11.
    Favre M, Butticaz C, Stevenson B, Jongeneel CV, Telenti A. High frequency of alternative splicing of human genes participating in the HIV-1 life cycle: a model using TSG101, betaTrCP, PPIA, INI1, NAF1, and PML. J Acquir Immune Defic Syndr 2003; 34:127–33; PMID:14526201; http://dx.doi.org/10.1097/00126334-200310010-00002.PubMedCrossRefGoogle Scholar
  12. 12.
    Fang M, Du H, Hu Y, Zhou X, Ouyang H, Zhang W, et al. Identification and characterization of the pig ABIN-1 gene and investigation of its association with reproduction traits. J Genet 2011; 90: e10–20; PMID:21677409.PubMedGoogle Scholar
  13. 13.
    Gupta K, Ott D, Hope TJ, Siliciano RF, Boeke JD. A human nuclear shuttling protein that interacts with human immunodeficiency virus type 1 matrix is packaged into virions. J Virol 2000; 74:11811–24; PMID:11090181; http://dx.doi.org/10.1128/JVI.74.24.11811-11824.2000.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tian B, Nowak DE, Jamaluddin M, Wang S, Brasier AR. Identification of direct genomic targets downstream of the nuclear factor-kappaB transcription factor mediating tumor necrosis factor signaling. J Biol Chem 2005; 280:17435–48; PMID:15722553; http://dx.doi.org/10.1074/jbc.M500437200.PubMedCrossRefGoogle Scholar
  15. 15.
    Hinata K, Gervin AM, Jennifer Zhang Y, Khavari PA. Divergent gene regulation and growth effects by NF-kappa B in epithelial and mesenchymal cells of human skin. Oncogene 2003; 22:1955–64; PMID:12673201; http://dx.doi.org/10.1038/sj.onc.1206198.PubMedCrossRefGoogle Scholar
  16. 16.
    Gallagher J, Howlin J, McCarthy C, Murphy EP, Bresnihan B, FitzGerald O, et al. Identification of Naf1/ABIN-1 among TNF-alpha-induced expressed genes in human synoviocytes using oligonucleotide microarrays. FEBS Lett 2003; 551:8–12; PMID:12965196; http://dx.doi.org/10.1016/S0014-5793(03)00823-8.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhou A, Scoggin S, Gaynor RB, Williams NS. Identification of NF-kappa B-regulated genes induced by TNFalpha utilizing expression profiling and RNA interference. Oncogene 2003; 22:2054–64; PMID:12673210; http://dx.doi.org/10.1038/sj.onc.1206262.PubMedCrossRefGoogle Scholar
  18. 18.
    Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, et al. Transcriptional profiling of IKK2/NF-kappa B-and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood 2004; 103:3365–73; PMID:14715628; http://dx.doi.org/10.1182/blood-2003-09-3296.PubMedCrossRefGoogle Scholar
  19. 19.
    Németh ZH, Leibovich SJ, Deitch EA, Vizi ES, Szabó C, Hasko G. cDNA microarray analysis reveals a nuclear factor-kappaB-independent regulation of macrophage function by adenosine. J Pharmacol Exp Ther 2003; 306:1042–9; PMID:12766259; http://dx.doi.org/10.1124/jpet.103.052944.PubMedCrossRefGoogle Scholar
  20. 20.
    Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S, et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin’s disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196:605–17; PMID:12208876; http://dx.doi.org/10.1084/jem.20020062.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Krappmann D, Wegener E, Sunami Y, Esen M, Thiel A, Mordmuller B, et al. The IkappaB kinase complex and NF-kappaB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol Cell Biol 2004; 24:6488–500; PMID:15226448; http://dx.doi.org/10.1128/MCB.24.14.6488-6500.2004.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bohn E, Müller S, Lauber J, Geffers R, Speer N, Spieth C, et al. Gene expression patterns of epithelial cells modulated by pathogenicity factors of Yersinia enterocolitica. Cell Microbiol 2004; 6:129–41; PMID:14706099; http://dx.doi.org/10.1046/j.1462-5822.2003.00346.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Bi Y, Zeng N, Chanudet E, Huang Y, Hamoudi RA, Liu H, et al. A20 inactivation in ocular adnexal MALT lymphoma. Haematologica 2012; 97:926–30; http://dx.doi.org/10.3324/haematol.2010.036798.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Huang L, Verstrepen L, Heyninck K, Wullaert A, Revets H, De Baetselier P, et al. ABINs inhibit EGF receptor-mediated NF-kappaB activation and growth of EGF receptor-overexpressing tumour cells. Oncogene 2008; 27:6131–40; PMID:18622428; http://dx.doi.org/10.1038/onc.2008.208.PubMedCrossRefGoogle Scholar
  25. 25.
    Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J, et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 2009; 457:906–9; PMID:19060883; http://dx.doi.org/10.1038/nature07575.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 2006; 281:18482–8; PMID:16684768; http://dx.doi.org/10.1074/jbc.M601502200.PubMedCrossRefGoogle Scholar
  27. 27.
    Sebban H, Yamaoka S, Courtois G. Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol 2006; 16:569–77; PMID:16987664; http://dx.doi.org/10.1016/j.tcb.2006.09.004.PubMedCrossRefGoogle Scholar
  28. 28.
    Wagner S, Carpentier I, Rogov V, Kreike M, Ikeda F, Löhr F, et al. Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 2008; 27:3739–45; PMID:18212736; http://dx.doi.org/10.1038/sj.onc.1211042.PubMedCrossRefGoogle Scholar
  29. 29.
    Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006; 22:245–57; PMID:16603398; http://dx.doi.org/10.1016/j.molcel.2006.03.026.PubMedCrossRefGoogle Scholar
  30. 30.
    Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. [corrected]. Nat Cell Biol 2006; 8:398–406; PMID:16547522; http://dx.doi.org/10.1038/ncb1384.PubMedCrossRefGoogle Scholar
  31. 31.
    Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasiawith immunodeficiency is causedbyimpairedNF-kappaB signaling. Nat Genet 2001; 27:277–85; PMID:11242109; http://dx.doi.org/10.1038/85837.PubMedCrossRefGoogle Scholar
  32. 32.
    Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R, et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med 2011; 208:1215–28; PMID:21606507; http://dx.doi.org/10.1084/jem.20102177.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ashida H, Kim M, Schmidt-Supprian M, Ma A, Ogawa M, Sasakawa C. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nat Cell Biol. Jan 2010; 12(1): 66–73; sup pp 61–69.CrossRefGoogle Scholar
  34. 34.
    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004; 6:97–105; PMID:14743216; http://dx.doi.org/10.1038/ncb1086.PubMedCrossRefGoogle Scholar
  35. 35.
    Cohen S, Ciechanover A, Kravtsova-Ivantsiv Y, Lapid D, Lahav-Baratz S. ABIN-1 negatively regulates NF-kappaB by inhibiting processing of the p105 precursor. Biochem Biophys Res Commun 2009; 389:205–10; PMID:19695220; http://dx.doi.org/10.1016/j.bbrc.2009.08.074.PubMedCrossRefGoogle Scholar
  36. 36.
    Fackler OT, Baur AS. Live and let die: Nef functions beyond HIV replication. Immunity 2002; 16:493–7; PMID:11970873; http://dx.doi.org/10.1016/S1074-7613(02)00307-2.PubMedCrossRefGoogle Scholar
  37. 37.
    Bukrinsky MI, Haggerty S, Dempsey MP, Sharova N, Adzhubel A, Spitz L, et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 1993; 365:666–9; PMID:8105392; http://dx.doi.org/10.1038/365666a0.PubMedCrossRefGoogle Scholar
  38. 38.
    Bleiber G, May M, Martinez R, Meylan P, Ott J, Beckmann JS, et al.; Swiss HIV Cohort Study. Use of a combined ex vivo/in vivo population approach for screening of human genes involved in the human immunodeficiency virus type 1 life cycle for variants influencing disease progression. J Virol 2005; 79:12674–80; PMID:16188970; http://dx.doi.org/10.1128/JVI.79.20.12674-12680.2005.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zhang S, Fukushi M, Hashimoto S, Gao C, Huang L, Fukuyo Y, et al. A new ERK2 binding protein, Naf1, attenuates the EGF/ERK2 nuclear signaling. Biochem Biophys Res Commun 2002; 297:17–23; PMID:12220502; http://dx.doi.org/10.1016/S0006-291X(02)02086-7.PubMedCrossRefGoogle Scholar
  40. 40.
    Wright JG, Christman JW. The role of nuclear factor kappa B in the pathogenesis of pulmonary diseases: implications for therapy. Am JRespir Med 2003; 2:211–9; PMID:14720003.CrossRefGoogle Scholar
  41. 41.
    El Bakkouri K, Wullaert A, Haegman M, Heyninck K, Beyaert R. Adenoviral gene transfer of the NF-kappa B inhibitory protein ABIN-1 decreases allergic airway inflammation in a murine asthma model. J Biol Chem 2005; 280:17938–44; PMID:15722346; http://dx.doi.org/10.1074/jbc.M413588200.PubMedCrossRefGoogle Scholar
  42. 42.
    Wullaert A, Wielockx B, Van Huffel S, Bogaert V, De Geest B, Papeleu P, et al. Adenoviral gene transfer of ABIN-1 protects mice from TNF/galactosamine-induced acute liver failure and lethality. Hepatology 2005; 42:381–9; PMID:16025521; http://dx.doi.org/10.1002/hep.20785.PubMedCrossRefGoogle Scholar
  43. 43.
    González-Amaro R, García-Monzón C, García-Buey L, Moreno-Otero R, Alonso JL, Yagüe E, et al. Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis. J Exp Med 1994; 179:841–8; PMID:7509363; http://dx.doi.org/10.1084/jem.179.3.841.PubMedCrossRefGoogle Scholar
  44. 44.
    Bird GL, Sheron N, Goka AK, Alexander GJ, Williams RS. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann Intern Med 1990; 112:917–20; PMID:2339855.PubMedCrossRefGoogle Scholar
  45. 45.
    Muto Y, Nouri-Aria KT, Meager A, Alexander GJ, Eddleston AL, Williams R. Enhanced tumour necrosis factor and interleukin-1 in fulminant hepatic failure. Lancet 1988; 2:72–4; PMID:2898700; http://dx.doi.org/10.1016/S0140-6736(88)90006-2.PubMedCrossRefGoogle Scholar
  46. 46.
    Xu Y, Bialik S, Jones BE, Iimuro Y, Kitsis RN, Srinivasan A, et al. NF-kappaB inactivation converts a hepatocyte cell line TNF-alpharesponse from proliferation to apoptosis. Am J Physiol 1998; 275: C1058–66; PMID:9755059.PubMedGoogle Scholar
  47. 47.
    Kirillova I, Chaisson M, Fausto N. Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor kappaB activation. Cell Growth Differ 1999; 10:819–28; PMID:10616907.PubMedGoogle Scholar
  48. 48.
    Arvelo MB, Cooper JT, Longo C, Daniel S, Grey ST, Mahiou J, et al. A20 protects mice from D-galactosamine/lipopolysaccharide acute toxic lethal hepatitis. Hepatology 2002; 35:535–43; PMID:11870365; http://dx.doi.org/10.1053/jhep.2002.31309.PubMedCrossRefGoogle Scholar
  49. 49.
    Luyer MD, Derikx JP, Beyaert R, Hadfoune M, van Kuppevelt TH, Dejong CH, et al. High-fat nutrition reduces hepatic damage following exposure to bacterial DNA and hemorrhagic shock. J Hepatol 2009; 50:342–50; PMID:19070388; http://dx.doi.org/10.1016/j.jhep.2008.08.025.PubMedCrossRefGoogle Scholar
  50. 50.
    Dong G, Chanudet E, Zeng N, Appert A, Chen YW, Au WY, et al. A20, ABIN-1/2, and CARD11 mutations and their prognostic value in gastrointestinal diffuse large B-cell lymphoma. Clin Cancer Res 2011; 17:1440–51; PMID:21266526; http://dx.doi.org/10.1158/1078-0432.CCR-10-1859.PubMedCrossRefGoogle Scholar
  51. 51.
    Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, et al.; Collaborative Association Study of Psoriasis. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009; 41:199–204; PMID:19169254; http://dx.doi.org/10.1038/ng.311.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 2009; 41:1234–7; PMID:19838193; http://dx.doi.org/10.1038/ng.472.PubMedCrossRefGoogle Scholar
  53. 53.
    Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 2009; 41:1228–33; PMID:19838195; http://dx.doi.org/10.1038/ng.468.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kawasaki A, Ito S, Furukawa H, Hayashi T, Goto D, Matsumoto I, et al. Association of TNFAIP3 interacting protein 1, TNIP1 with systemic lupus erythematosus in a Japanese population: a case-control association study. Arthritis Res Ther 2010; 12: R174; PMID:20849588; http://dx.doi.org/10.1186/ar3134.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Igarashi H, Yahagi A, Saika T, Hashimoto J, Tomita T, Yoshikawa H, et al. A pro-inflammatory role for A20 and ABIN family proteins in human fibroblast-like synoviocytes in rheumatoid arthritis. Immunol Lett 2012; 141:246–53; PMID:22093807; http://dx.doi.org/10.1016/j.imlet.2011.10.011.PubMedCrossRefGoogle Scholar
  56. 56.
    Van Huffel S, Delaei F, Heyninck K, De Valck D, Beyaert R. Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2. J Biol Chem 2001; 276:30216–23; PMID:11390377; http://dx.doi.org/10.1074/jbc.M100048200.PubMedCrossRefGoogle Scholar
  57. 57.
    Liu WK, Chien CY, Chou CK, Su JY. An LKB1-interacting protein negatively regulates TNFalpha-induced NF-kappaB activation. JBiomed Sci 2003; 10:242–52; PMID:12595760.Google Scholar
  58. 58.
    Hughes DP, Marron MB, Brindle NP. The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res 2003; 92:630–6; PMID:12609966; http://dx.doi.org/10.1161/01.RES.0000063422.38690.DC.PubMedCrossRefGoogle Scholar
  59. 59.
    Li CC, Chou CK, Wang MH, Tsai TF. Overexpression of ABIN-2, a negative regulator of NF-kappaB, delays liver regeneration in the ABIN-2 transgenic mice. Biochem Biophys Res Commun 2006; 342:300–9; PMID:16480954; http://dx.doi.org/10.1016/j.bbrc.2006.01.114.PubMedCrossRefGoogle Scholar
  60. 60.
    Davies S, Dai D, Feldman I, Pickett G, Leslie KK. Identification of a novel mechanism of NF-kappaB inactivation by progesterone through progesterone receptors in Hec 50co poorly differentiated endometrial cancer cells: induction of A20 and ABIN-2. Gynecol Oncol 2004; 94:463–70; PMID:15297189; http://dx.doi.org/10.1016/j.ygyno.2004.05.028.PubMedCrossRefGoogle Scholar
  61. 61.
    Brewer G. An A + U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol Cell Biol 1991; 11:2460–6; PMID:1901943.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Arao Y, Kikuchi A, Kishida M, Yonekura M, Inoue A, Yasuda S, et al. Stability of A+U-rich element binding factor 1 (AUF1)-binding messenger ribonucleic acid correlates with the subcellular relocalization of AUF1 in the rat uterus upon estrogen treatment. Mol Endocrinol 2004; 18:2255–67; PMID:15192077; http://dx.doi.org/10.1210/me.2004-0103.PubMedCrossRefGoogle Scholar
  63. 63.
    Liu WK, Yen PF, Chien CY, Fann MJ, Su JY, Chou CK. The inhibitor ABIN-2 disrupts the interaction of receptor-interacting protein with the kinase subunit IKKgammato block activation of the transcription factor NF-kappaB andpotentiate apoptosis. Biochem J 2004; 378:867–76; PMID:14653779; http://dx.doi.org/10.1042/BJ20031736.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ye J, Xie X, Tarassishin L, Horwitz MS. Regulation of the NF-kappaB activation pathway by isolated domains of FIP3/IKKgamma, a component of the IkappaB-alpha kinase complex. J Biol Chem 2000; 275:9882–9; PMID:10734145; http://dx.doi.org/10.1074/jbc.275.13.9882.PubMedCrossRefGoogle Scholar
  65. 65.
    Leotoing L, Chereau F, Baron S, Hube F, Valencia HJ, Bordereaux D, et al. A20-binding inhibitor of nuclear factor-kappaB (NF-kappaB)-2 (ABIN-2) is an activator of inhibitor of NF-kappaB (IkappaB) kinase alpha (IKKalpha)-mediated NF-kappaB transcriptional activity. J Biol Chem 2011; 286:32277–88; PMID:21784860; http://dx.doi.org/10.1074/jbc.M111.236448.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Papoutsopoulou S, Symons A, Tharmalingham T, Belich MP, Kaiser F, Kioussis D, et al. ABIN-2 is required for optimal activation of Erk MAP kinase in innate immune responses. Nat Immunol 2006; 7:606–15; PMID:16633345; http://dx.doi.org/10.1038/ni1334.PubMedCrossRefGoogle Scholar
  67. 67.
    Hermoso MA, Cidlowski JA. Putting the brake on inflammatory responses: the role of glucocorticoids. IUBMB Life 2003; 55:497–504; PMID:14658755; http://dx.doi.org/10.1080/15216540310001642072.PubMedCrossRefGoogle Scholar
  68. 68.
    Dai D, Kumar NS, Wolf DM, Leslie KK. Molecular tools to reestablish progestin control of endometrial cancer cell proliferation. Am J Obstet Gynecol 2001; 184:790–7; PMID:11303185; http://dx.doi.org/10.1067/mob.2001.113844.PubMedCrossRefGoogle Scholar
  69. 69.
    Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2001; 2:257–67; PMID:11283723; http://dx.doi.org/10.1038/35067005.PubMedCrossRefGoogle Scholar
  70. 70.
    Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 2000; 86:24–9; PMID:10625301; http://dx.doi.org/10.1161/01.RES.86.1.24.PubMedCrossRefGoogle Scholar
  71. 71.
    Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 2000; 275:9102–5; PMID:10734041; http://dx.doi.org/10.1074/jbc.275.13.9102.PubMedCrossRefGoogle Scholar
  72. 72.
    Kwak HJ, Lee SJ, Lee YH, Ryu CH, Koh KN, Choi HY, et al. Angiopoietin-1 inhibits irradiation-and mannitol-induced apoptosis in endothelial cells. Circulation 2000; 101:2317–24; PMID:10811601; http://dx.doi.org/10.1161/01.CIR.101.19.2317.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim I, Moon SO, Park SK, Chae SW, Koh GY. Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 2001; 89:477–9; PMID:11557733; http://dx.doi.org/10.1161/hh1801.097034.PubMedCrossRefGoogle Scholar
  74. 74.
    Gamble JR, Drew J, Trezise L, Underwood A, Parsons M, Kasminkas L, et al. Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 2000; 87:603–7; PMID:11009566; http://dx.doi.org/10.1161/01.RES.87.7.603.PubMedCrossRefGoogle Scholar
  75. 75.
    Tadros A, Hughes DP, Dunmore BJ, Brindle NP. ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1. Blood 2003; 102:4407–9; PMID:12933576; http://dx.doi.org/10.1182/blood-2003-05-1602.PubMedCrossRefGoogle Scholar
  76. 76.
    Lang V, Symons A, Watton SJ, Janzen J, Soneji Y, Beinke S, et al. ABIN-2 forms aternary complex with TPL-2 andNF-kappa B1p105 and is essential for TPL-2 protein stability. Mol Cell Biol 2004; 24:5235–48; PMID:15169888; http://dx.doi.org/10.1128/MCB.24.12.5235-5248.2004.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Beinke S, Deka J, Lang V, Belich MP, Walker PA, Howell S, et al. NF-kappaB1 p105 negatively regulates TPL-2 MEK kinase activity. Mol Cell Biol 2003; 23:4739–52; PMID:12832462; http://dx.doi.org/10.1128/McB.23.14.4739-4752.2003.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Waterfield MR, Zhang M, Norman LP, Sun SC NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governingthe stability and function of the Tpl2 kinase. Mol Cell 2003; 11:685–94; PMID:12667451; http://dx.doi.org/10.1016/S1097-2765(03)00070-4.PubMedCrossRefGoogle Scholar
  79. 79.
    Chien CY, Liu WK, Chou CK, Su JY. The A20-binding protein ABIN-2 exerts unexpected function in mediating transcriptional coactivation. FEBS Lett 2003; 543:55–60; PMID:12753905; http://dx.doi.org/10.1016/S0014-5793(03)00401-0.PubMedCrossRefGoogle Scholar
  80. 80.
    Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391:184–7; PMID:9428765; http://dx.doi.org/10.1038/34432.PubMedCrossRefGoogle Scholar
  81. 81.
    Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, et al. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998; 18:38–43; PMID:9425897; http://dx.doi.org/10.1038/ng0198-38.PubMedCrossRefGoogle Scholar
  82. 82.
    Staege H, Brauchlin A, Schoedon G, Schaffner A. Two novel genes FIND and LIND differentially expressed in deactivated and Listeria-infected human macrophages. Immunogenetics 2001; 53:105–13; PMID:11345586; http://dx.doi.org/10.1007/s002510100306.PubMedCrossRefGoogle Scholar
  83. 83.
    Weaver BK, Bohn E, Judd BA, Gil MP, Schreiber RD. ABIN-3: a molecular basis for species divergence in interleukin-10-induced anti-inflammatory actions. Mol Cell Biol 2007; 27:4603–16; PMID:17485448; http://dx.doi.org/10.1128/MCB.00223-07.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Verstrepen L, Adib-Conquy M, Kreike M, Carpentier I, Adrie C, Cavaillon JM, et al. Expression of the NF-kappaB inhibitor ABIN-3 in response to TNF and toll-like receptor 4 stimulation is itself regulated by NF-kappaB. J Cell Mol Med 2008; 12:316–29; PMID:18081698; http://dx.doi.org/10.1111/j.1582-4934.2007.00187.x.PubMedCrossRefGoogle Scholar
  85. 85.
    Sakai Y, Uchida K, NakayamaH. A20 and ABIN-3 possibly promote regression oftrehalose 6,6′-dimycolate (TDM)-induced granuloma by interacting with an NF-kappa B signaling protein, TAK-1. Inflamm Res 2012; 61:245–53; PMID:22173278; http://dx.doi.org/10.1007/s00011-011-0406-6.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang L, Gordon RA, Huynh L, Su X, Park Min KH, Han J, et al. Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 2010; 32:518–30; PMID:20362473; http://dx.doi.org/10.1016/j.immuni.2010.03.014.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2014

Authors and Affiliations

  • Lynn Verstrepen
    • 1
    • 2
  • Isabelle Carpentier
    • 1
    • 2
  • Rudi Beyaert
    • 1
    • 2
  1. 1.Department of Molecular BiologyGhent UniversityZwijnaardeBelgium
  2. 2.Department for Molecular Biomedical Research, Unit of Molecular Signal Transduction in InflammationVIBZwijnaardeBelgium

Personalised recommendations