Skip to main content

A20—A Bipartite Ubiquitin Editing Enzyme with Immunoregulatory Potential

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 809))

Abstract

Proper regulation of inflammation is essential for combating pathogen invasion and maintaining homeostasis. While hyporesponsive hosts succumb to infections, unchecked inflammatory reactions promote debilitating and fatal conditions including septic shock, autoimmune disease, atherosclerosis, graft rejection, and cancer.1–3 Pathogens, host immune cell ligands, and pro-inflammatory cytokines such as tumor Necrosis factor-α (TNF-α),Interleukin-1-β(IL1-β), and Lipopolysaccharide (LPS) induce an array of inflammatory responses by activating a variety of cell types.3 Although much is known about how inflammatory responses are initiated and sustained, less is known about how inflammation is attenuated to maintain a homeostatic balance. In this chapter, we review the key role played by A20, also referred to as Tumor Necrosis Factor Inducible Protein 3 (TNFAIP3) in restoring cellular homeostasis through NF-κB inhibition, and discuss the molecular basis for its potent anti-inflammatory function as related to the ubiquitin editing and ubiquitin binding activities of A20.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCulloch CA, Downey GP, El-Gabalawy H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Discov 2006; 5:864–76; PMID:17016427 http://dx.doi.org/10.1038/nrd2109.

    Article  CAS  PubMed  Google Scholar 

  2. Boone DL, Lee EG, Libby S, Gibson PJ, Chien M, Chan F, Madonia M, Burkett PR, Ma A. Recent advances in understanding NF-kappaB regulation. Inflamm Bowel Dis 2002; 8:201–12; PMID:11979142 http://dx.doi.org/10.1097/00054725-200205000-00008.

    Article  PubMed  Google Scholar 

  3. Häcker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci STKE 2006; 2006:re13; PMID:17047224; http://dx.doi.org/10.1126/stke.3572006re13.

    Article  PubMed  Google Scholar 

  4. Liu YC, Penninger J, Karin M. Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 2005; 5:941–52; PMID:16322747; http://dx.doi.org/10.1038/nri1731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixit VM, Green S, Sarma V, Holzman LB, Wolf FW, O’Rourke K, Ward PA, Prochownik EV, Marks RM. Tumor necrosis factor-alpha induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem 1990; 265:2973–8; PMID:2406243.

    CAS  PubMed  Google Scholar 

  6. Krikos A, Laherty CD, Dixit VM. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 1992; 267:17971–6; PMID:1381359.

    CAS  PubMed  Google Scholar 

  7. Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7:758–65; PMID:16056267; http://dx.doi.org/10.1038/ncb0805-758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C. A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996; 271:18068–73; PMID:8663499; http://dx.doi.org/10.1074/jbc.271.30.18068.

    Article  CAS  PubMed  Google Scholar 

  9. Jäättelä M, Mouritzen H, Elling F, Bastholm L. A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol 1996; 156:1166–73; PMID:8557994.

    PubMed  Google Scholar 

  10. Longo CR, Arvelo MB, Patel VI, Daniel S, Mahiou J, Grey ST, Ferran C. A20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis. Circulation 2003; 108:1113–8; PMID:12885753; http://dx.doi.org/10.1161/01.CIR.0000083718.76889.D0.

    Article  CAS  PubMed  Google Scholar 

  11. Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 2000; 60:1143–51; PMID:11007952; http://dx.doi.org/10.1016/S0006-2952(00)00404-4.

    Article  CAS  PubMed  Google Scholar 

  12. Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol Cell 2010; 40:548–57; PMID:21095585; http://dx.doi.org/10.1016/j.molcel.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  13. Xia ZP, Chen ZJ. TRAF2: a double-edged sword? Sci STKE 2005; 2005: pe7; PMID:15728425.

    PubMed  Google Scholar 

  14. Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D, Turer EE, Lee BL, Shiffin N, Advincula R, Malynn BA, et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 2008; 28:381–90; PMID:18342009; http://dx.doi.org/10.1016/j.immuni.2008.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laherty CD, Perkins ND, Dixit VM. Human T cell leukemia virus type I Tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor kappa B. J Biol Chem 1993; 268:5032–9; PMID:8444879.

    CAS  PubMed  Google Scholar 

  16. Heyninck K, Beyaert R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF 6. FEBS Lett 1999; 442:147–50; PMID:9928991; http://dx.doi.org/10.1016/S0014-5793(98)01645-7.

    Article  CAS  PubMed  Google Scholar 

  17. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficientmice. Science 2000; 289:2350–4; PMID:11009421; http://dx.doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferran C. Protective genes in the vessel wall: Modulators of graft survival and function. Transplantation 2006; 82(Suppl):S36–40; PMID:16829794; http://dx.doi.org/10.1097/01.tp.0000231445.62162.d5.

    Article  CAS  PubMed  Google Scholar 

  19. Daniel S, Arvelo MB, Patel VI, Longo CR, Shrikhande G, Shukri T, Mahiou J, Sun DW, Mottley C, Grey ST, et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 2004; 104:2376–84; PMID:15251990; http://dx.doi.org/10.1182/blood-2003-02-0635.

    Article  CAS  PubMed  Google Scholar 

  20. Arvelo MB, Cooper JT, Longo C, Daniel S, Grey ST, Mahiou J, Czismadia E, Abu-Jawdeh G, Ferran C. A20 protects mice from D-galactosamine/lipopolysaccharide acute toxic lethal hepatitis. Hepatology 2002; 35:535–43; PMID:11870365.

    Article  CAS  PubMed  Google Scholar 

  21. Grey ST, Longo C, Shukri T, Patel VI, Csizmadia E, Daniel S, Arvelo MB, Tchipashvili V, Ferran C. Genetic engineering of a suboptimal islet graft with A20 preserves beta cell mass and function. J Immunol 2003; 170:6250–6; PMID:12794157.

    Article  CAS  PubMed  Google Scholar 

  22. Opipari AW Jr., Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem 1990; 265:14705–8; PMID:2118515.

    CAS  PubMed  Google Scholar 

  23. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 1996; 93:6721–5; PMID:8692885; http://dx.doi.org/10.1073/pnas.93.13.6721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Makarova KS, Aravind L, Koonin EV. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 2000; 25:50–2; PMID:10664582; http://dx.doi.org/10.1016/S0968-0004(99)01530-3.

    Article  CAS  PubMed  Google Scholar 

  25. Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S, Ploegh HL, Smith TS. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378:727–34; PMID:14748687; http://dx.doi.org/10.1042/BJ20031377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL, Kilshaw PJ. A novel type of deubiquitinating enzyme. J Biol Chem 2003; 278:23180–6; PMID:12682062; http://dx.doi.org/10.1074/jbc.M301863200.

    Article  CAS  PubMed  Google Scholar 

  27. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694–9; PMID:15258597; http://dx.doi.org/10.1038/nature02794.

    Article  CAS  PubMed  Google Scholar 

  28. Jackson PK, Eldridge AG, Freed E, Furstenthal L, Hsu JY, Kaiser BK, Reimann JD. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol 2000; 10:429–39; PMID:10998601; http://dx.doi.org/10.1016/S0962-8924(00)01834-1.

    Article  CAS  PubMed  Google Scholar 

  29. Pickart CM. Mechanisms underlyingubiquitination. Annu Rev Biochem 2001; 70:503–33; PMID:11395416; http://dx.doi.org/10.1146/annurev.biochem.70.1.503.

    Article  CAS  PubMed  Google Scholar 

  30. Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001; 2:169–78; PMID:11265246; http://dx.doi.org/10.1038/35056563.

    Article  CAS  PubMed  Google Scholar 

  31. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81:203–29; PMID:22524316; http://dx.doi.org/10.1146/annurev-biochem-060310-170328.

    Article  CAS  PubMed  Google Scholar 

  32. Shi CS, Kehrl JH. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 2003; 278:15429–34; PMID:12591926; http://dx.doi.org/10.1074/jbc.M211796200.

    Article  CAS  PubMed  Google Scholar 

  33. Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 2003; 4:517–22; PMID:12704427; http://dx.doi.org/10.1038/sj.embor.embor824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 2002; 9:1149–59; PMID:12401499; http://dx.doi.org/10.1016/S1074-5521(02)00248-X.

    Article  CAS  PubMed  Google Scholar 

  35. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 2004; 5:1052–60; PMID:15334086; http://dx.doi.org/10.1038/ni1110.

    Article  CAS  PubMed  Google Scholar 

  36. Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, Formisano S, Vito P, Leonardi A. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol Chem 2006; 281:18482–8; PMID:16684768; http://dx.doi.org/10.1074/jbc.M601502200.

    Article  CAS  PubMed  Google Scholar 

  37. Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 2003; 18:655–64; PMID:12753742; http://dx.doi.org/10.1016/S1074-7613(03)00092-X.

    Article  CAS  PubMed  Google Scholar 

  38. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000; 103:351–61; PMID:11057907; http://dx.doi.org/10.1016/S0092-8674(00)00126-4.

    Article  CAS  PubMed  Google Scholar 

  39. Lee S, Tsai YC, Mattera R, Smith WJ, Kostelansky MS, Weissman AM, Bonifacino JS, Hurley JH. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 2006; 13:264–71; PMID:16462746; http://dx.doi.org/10.1038/nsmb1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Penengo L, Mapelli M, Murachelli AG, Confalonieri S, Magri L, Musacchio A, Di Fiore PP, Polo S, Schneider TR. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 2006; 124:1183–95; PMID:16499958; http://dx.doi.org/10.1016/j.cell.2006.02.020.

    Article  CAS  PubMed  Google Scholar 

  41. Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Mol Cell 2010; 40:548–57; PMID:21095585; http://dx.doi.org/10.1016/j.molcel.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  42. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 1996; 4:387–96; PMID:8612133; http://dx.doi.org/10.1016/S1074-7613(00)80252-6.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang SQ, Kovalenko A, Cantarella G, Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 2000; 12:301–11; PMID:10755617; http://dx.doi.org/10.1016/S1074-7613(00)80183-1.

    Article  CAS  PubMed  Google Scholar 

  44. Park SM, Yoon JB, Lee TH. Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett 2004; 566:151–6; PMID:15147886; http://dx.doi.org/10.1016/j.febslet.2004.04.021.

    Article  CAS  PubMed  Google Scholar 

  45. Bertrand MJ, Lippens S, Staes A, Gilbert B, Roelandt R, De Medts J, Gevaert K, Declercq W, Vandenabeele P. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS One 2011; 6: e22356; PMID:21931591; http://dx.doi.org/10.1371/journal.pone.0022356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shembade N, Harhaj E. A20 inhibition of NFκB and inflammation: targeting E2: E3 ubiquitin enzyme complexes. Cell Cycle 2010; 9:2481–2; PMID:20543575; http://dx.doi.org/10.4161/cc9.13.12269.

    Article  CAS  PubMed  Google Scholar 

  47. Oshima S, Turer EE, Callahan JA, Chai S, Advincula R, Barrera J, Shifrin N, Lee B, Benedict Yen TS, Woo T, et al. ABIN-1 is a ubiquitin sensor that restricts cell death and sustains embryonic development. Nature 2009; 457:906–9; PMID:19060883; http://dx.doi.org/10.1038/nature07575.

    Article  CAS  PubMed  Google Scholar 

  48. Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 2008; 9:254–62; PMID:18246070; http://dx.doi.org/10.1038/ni1563.

    Article  CAS  PubMed  Google Scholar 

  49. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J 2009; 28:513–22; PMID:19131965; http://dx.doi.org/10.1038/emboj.2008.285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shembade N, Harhaj EW. Regulation of NF-kappaB signaling by the A20 deubiquitinase. Cell Mol Immunol 2012; 20:123–30; PMID:22343828; http://dx.doi.org/10.1038/cmi.2011.59.

    Article  CAS  Google Scholar 

  51. Shembade N, Pujari R, Harhaj NS, Abbott DW, Harhaj EW. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol 2011; 12:834–43; PMID:21765415; http://dx.doi.org/10.1038/ni.2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010; 327:1135–9; PMID:20185725; http://dx.doi.org/10.1126/science.1182364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shembade N, Harhaj NS, Liebl DJ, Harhaj EW. Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1-and LPS-mediated NF-kappaB and JNK signaling. EMBO J 2007; 26:3910–22; PMID:17703191; http://dx.doi.org/10.1038/sj.emboj.7601823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou J, Wu R, High AA, Slaughter CA, Finkelstein D, Rehg JE, Redecke V, Häcker H. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease. Proc Natl Acad Sci USA 2011; 108: E998–1006; PMID:22011580; http://dx.doi.org/10.1073/pnas.1106232108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ. Direct, noncatalytic mechanism of IKK inhibition by A 20. Mol Cell 2011; 44:559–71; PMID:22099304; http://dx.doi.org/10.1016/j.molcel.2011.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J 2012; 31:3856–70; PMID:23032187; http://dx.doi.org/10.1038/emboj.2012.241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, Kensche T, Dikic I, Beyaert R. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J 2012; 31:3845–55; PMID:23032186; http://dx.doi.org/10.1038/emboj.2012.240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu TT, Onizawa M, Hammer GE, Turer EE, Yin Q, Damko E, Agelidis A, Shifrin N, Advincula R, Barrera J, et al. Dimerization and ubiquitin mediated recruitment of A20,acomplexdeubiquitinating enzyme. Immunity 2013; 38:896–905; PMID:23602765; http://dx.doi.org/10.1016/j.immuni.2013.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Düwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U, Darnay BG, Ruland J, Marynen P, Krappmann D. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol 2009; 182:7718–28; PMID:19494296; http://dx.doi.org/10.4049/jimmunol.0803313.

    Article  PubMed  CAS  Google Scholar 

  60. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, Sun L, Chen ZJ, Marynen P, Beyaert R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 2008; 9:263–71; PMID:18223652; http://dx.doi.org/10.1038/ni1561.

    Article  CAS  PubMed  Google Scholar 

  61. Grey ST, Arvelo MB, Hasenkamp W, Bach FH, Ferran C. A20 inhibits cytokine-induced apoptosis and nuclear factor kappaB-dependent gene activation in islets. J Exp Med 1999; 190:1135–46; PMID:10523611; http://dx.doi.org/10.1084/jem.190.8.1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Siracuse JJ, Fisher MD, da Silva CG, Peterson CR, Csizmadia E, Moll HP, Damrauer SM, Studer P, Choi LY, Essayagh S, et al. A20-mediated modulation of inflammatory and immune responses in aortic allografts and development of transplant arteriosclerosis. Transplantation 2012; 93:373–82; PMID:22245872; http://dx.doi.org/10.1097/TP.0b013e3182419829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patel VI, Daniel S, Longo CR, Shrikhande GV, Scali ST, Czismadia E, Groft CM, Shukri T, Motley-Dore C, Ramsey HE, et al. A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J 2006; 20:1418–30; PMID:16816117; http://dx.doi.org/10.1096/fj.05-4981com.

    Article  CAS  PubMed  Google Scholar 

  64. Damrauer SM, Fisher MD, Wada H, Siracuse JJ, da Silva CG, Moon K, Csizmadia E, Maccariello ER, Patel VI, Studer P, et al. A20 inhibits post-angioplasty restenosis by blocking macrophage trafficking and decreasing adventitial neovascularization. Atherosclerosis 2010; 211:404–8; PMID:20430393; http://dx.doi.org/10.1016/j.atherosclerosis.2010.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kunter U, Daniel S, Arvelo MB, Choi J, Shukri T, Patel VI, Longo CR, Scali ST, Shrikhande G, Rocha E, et al. Combined expression of A1 and A20 achieves optimal protection of renal proximal tubular epithelial cells. Kidney Int 2005; 68:1520–32; PMID:16164629; http://dx.doi.org/10.1111/j.1523-1755.2005.00564.x.

    Article  CAS  PubMed  Google Scholar 

  66. Ramsey HE, Da Silva CG, Longo CR, Csizmadia E, Studer P, Patel VI, Damrauer SM, Siracuse JJ, Daniel S, Ferran C. A20 protects mice from lethal liver ischemia/reperfusion injury by increasing peroxisome proliferator-activated receptor-alpha expression. Liver Transpl 2009; 15:1613–21; PMID:19877201; http://dx.doi.org/10.1002/lt.21879.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Honma K, Tsuzuki S, Nakagawa M, Tagawa H, Nakamura S, Morishima Y, Seto M. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 2009; 114:2467–75; PMID:19608751; http://dx.doi.org/10.1182/blood-2008-12-194852.

    Article  CAS  PubMed  Google Scholar 

  68. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009; 459:712–6; PMID:19412163; http://dx.doi.org/10.1038/nature07969.

    Article  CAS  PubMed  Google Scholar 

  69. Braun FC, Grabarczyk P, Möbs M, Braun FK, Eberle J, Beyer M, Sterry W, Busse F, Schröder J, Delin M, et al. Tumor suppressor TNFAIP3 (A20) is frequently deleted in Sézary syndrome. Leukemia 2011; 25:1494–501; PMID:21625233; http://dx.doi.org/10.1038/leu.2011.101.

    Article  CAS  PubMed  Google Scholar 

  70. Malynn BA, Ma A. A20 takes on tumors: tumor suppression by an ubiquitin-editing enzyme. J Exp Med 2009; 206:977–80; PMID:19380636; http://dx.doi.org/10.1084/jem.20090765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M, Cerri M, Rossi D, Murty VV, Zucca E, et al. The NF-kappaB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 2009; 113:4918–21; PMID:19258598; http://dx.doi.org/10.1182/blood-2008-08-174110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hymowitz SG, Wertz IE. A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 2010; 10:332–41; PMID:20383180; http://dx.doi.org/10.1038/nrc2775.

    Article  CAS  PubMed  Google Scholar 

  73. Vereecke L, Beyaert R, van Loo G. Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans 2011; 39:1086–91; PMID:21787353; http://dx.doi.org/10.1042/BSt0391086.

    Article  CAS  PubMed  Google Scholar 

  74. Graham RR, Cotsapas C, Davies L, Hackett R, Lessard CJ, Leon JM, Burtt NP, Guiducci C, Parkin M, Gates C, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 2008; 40:1059–61; PMID:19165918; http://dx.doi.org/10.1038/ng.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Musone SL, Taylor KE, Lu TT, Nititham J, Ferreira RC, Ortmann W, Shifrin N, Petri MA, Kamboh MI, Manzi S, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008; 40:1062–4; PMID:19165919; http://dx.doi.org/10.1038/ng.202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009; 30:383–91; PMID:19643665; http://dx.doi.org/10.1016/j.it.2009.05.007.

    Article  CAS  PubMed  Google Scholar 

  77. Elsby LM, Orozco G, Denton J, Worthington J, Ray DW, Donn RP. Functional evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin Exp Rheumatol 2010; 28:708–14; PMID:20822710.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PI, Maller J, Pe’er I, Burtt NP, Blumenstiel B, DeFelice M, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 2007; 39:1477–82; PMID:17982456; http://dx.doi.org/10.1038/ng.2007.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thomson W, Barton A, Ke X, Eyre S, Hinks A, Bowes J, Donn R, Symmons D, Hider S, Bruce IN, et al.; Wellcome Trust Case Control Consortium; YEAR Consortium. Rheumatoid arthritis association at 6q23. Nat Genet 2007; 39:1431–3; PMID:17982455; http://dx.doi.org/10.1038/ng.2007.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I, Hiscott J. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 2006; 281:2095–103; PMID:16306043; http://dx.doi.org/10.1074/jbc.M510326200.

    Article  CAS  PubMed  Google Scholar 

  81. Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, Vogel H, Recht LD, Scheck AC, Sikic BI. Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol 2006; 24:274–87; PMID:16365179; http://dx.doi.org/10.1200/JCO.2005.02.9405.

    Article  CAS  PubMed  Google Scholar 

  82. Xu X, Man K, Zheng SS, Liang TB, Lee TK, Ng KT, Fan ST, Lo CM. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl 2006; 12:621–7; PMID:16555322; http://dx.doi.org/10.1002/lt.20630.

    Article  PubMed  Google Scholar 

  83. da Silva CG, Maccariello ER, Wilson SW, Putheti P, Daniel S, Damrauer SM, Peterson CR, Siracuse JJ, Kaczmarek E, Ferran C. Hepatocyte growth factor preferentially activates the anti-inflammatory arm of NF-κB signaling to induce A20 and protect renal proximal tubular epithelial cells from inflammation. J Cell Physiol 2012; 227:1382–90; PMID:21618526; http://dx.doi.org/10.1002/jcp.22851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Wertz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wertz, I., Dixit, V. (2014). A20—A Bipartite Ubiquitin Editing Enzyme with Immunoregulatory Potential. In: Ferran, C. (eds) The Multiple Therapeutic Targets of A20. Advances in Experimental Medicine and Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0398-6_1

Download citation

Publish with us

Policies and ethics