Skip to main content

Preparing for Mobility Data Exploration

  • Chapter
  • First Online:
Mobility Data Management and Exploration

Abstract

Exploring mobility data already collected and stored in efficient database systems is the next step of mobility data management. Historical data ‘hide’ a treasure of ‘buried’ knowledge that ‘asks’ for mining. To do so, the typical Knowledge Discovery in Data (KDD) process typically includes the organization of historical information in a Data Warehouse (DW), a first level of analysis exploiting on data cubes build upon the DW, according to a multi-dimensional model, and, then, a deeper look into the data in order to extract models and patterns that data obey or follow, using data mining techniques. In this chapter, we provide the preparatory actions in order for data mining to follow in the next chapter. In particular, we present DW approaches for mobility, especially for trajectory data (Sect. 6.1), discuss about the kind of multi-dimensional analysis that is suitable for mobility data and the challenges that arise due to its peculiarity (Sect. 6.2), and present a methodology for progressive, interactive analysis that is useful to mobility data scientists (Sect. 6.3). Finally, we provide sound definitions for trajectory similarity, which is a key component of whatever analysis to be made with trajectory databases (Sect. 6.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases. In: Proceedings of FODO

    Google Scholar 

  • Berndt J, Clifford J (1996) Finding patterns in time series: a dynamic programming approach. In: Advances in knowledge discovery and data mining. AAAI/MIT Press, London

    Google Scholar 

  • Bollobas B, Das G, Gunopulos D, Mannila H (2001) Time-series similarity problems and well-separated geometric sets. Nord J Comput 8(4):409–423

    MATH  MathSciNet  Google Scholar 

  • Chen L, Ng RT (2004) On the marriage of lp-norms and edit distance. In: Proceedings of VLDB

    Google Scholar 

  • Chen L, Ozsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: Proceedings of SIGMOD

    Google Scholar 

  • Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of VLDB

    Google Scholar 

  • Frentzos E, Gratsias K, Theodoridis Y (2007) Index-based most similar trajectory search. In: Proceedings of ICDE

    Google Scholar 

  • Kellaris G, Pelekis N, Theodoridis Y (2013) Map-matched trajectory compression. J Syst Softw 86(6):1566–1579

    Article  Google Scholar 

  • Lee SL, Chun SJ, Kim DH, Lee JH, Chung CW (2000) Similarity search for multidimensional data sequences. In: Proceedings of ICDE

    Google Scholar 

  • Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of SIGMOD

    Google Scholar 

  • Leonardi L, Marketos G, Frentzos E, Giatrakos N, Orlando S, Pelekis N, Raffaetà A, Roncato A, Silvestri C, Theodoridis Y (2010) T-warehouse: visual OLAP analysis on trajectory data. In: Proceedings of ICDE

    Google Scholar 

  • Leonardi L, Orlando S, Raffaetà A, Roncato A, Silvestri C, Andrienko G, Andrienko N (2014) A general framework for trajectory data warehousing and visual OLAP. Geoinformatica, 18: (in press)

    Google Scholar 

  • Lin B, Su J (2005) Shapes based trajectory queries for moving objects. In: Proceedings of ACM-GIS

    Google Scholar 

  • Marketos G, Theodoridis Y (2010) Ad-hoc OLAP on trajectory data. In: Proceedings of MDM

    Google Scholar 

  • Marketos G, Frentzos E, Ntoutsi I, Pelekis N, Raffaetà A, Theodoridis Y (2008) Building real world trajectory warehouses. In: Proceedings of MobiDE

    Google Scholar 

  • Morse MD, Patel JM (2007) An efficient and accurate method for evaluating time series similarity. In: Proceedings of SIGMOD

    Google Scholar 

  • Orlando S, Orsini R, Raffaetà A, Roncato A, Silvestri C (2007) Trajectory data warehouses: design and implementation issues. J Comput Sci Eng 1(2):211–232

    Article  Google Scholar 

  • Panagiotakis C, Pelekis N, Kopanakis I (2009) Trajectory voting and classification based on spatiotemporal similarity in moving object databases. In: Proceedings of IDA

    Google Scholar 

  • Papadias D, Tao Y, Kalnis P, Zhang J (2002) Indexing spatio-temporal data warehouses. In: Proceedings of ICDE

    Google Scholar 

  • Pelekis N, Kopanakis I, Kotsifakos E, Frentzos E, Theodoridis Y (2011) Clustering uncertain trajectories. Knowl Inf Syst 28(1):117–147

    Article  Google Scholar 

  • Pelekis N, Andrienko G, Andrienko N, Kopanakis I, Marketos G, Theodoridis Y (2012) Visually exploring movement data via similarity-based analysis. J Intell Inf Syst 38(2):343–391

    Article  Google Scholar 

  • Tao Y, Papadias D (2005) Historical spatio-temporal aggregation. ACM Trans Inf Syst 23(1):61–102

    Article  Google Scholar 

  • Tao Y, Kollios G, Considine J, Li F, Papadias D (2004) Spatio-temporal aggregation using sketches. In: Proceedings of ICDE

    Google Scholar 

  • Tiakas E, Papadopoulos AN, Nanopoulos A, Manolopoulos Y, Stojanovic D, Djordjevic-Kajan S (2009) Searching for similar trajectories in spatial networks. J Syst Softw 82(5):772–788

    Article  Google Scholar 

  • Trajcevski G, Ding H, Scheuermann P, Tamassia R, Vaccaro D (2007) Dynamics-aware similarity of moving objects trajectories. In: Proceedings of ACM-GIS

    Google Scholar 

  • Vlachos M, Gunopulos D, Das G (2002a) Rotation invariant distance measures for trajectories. In: Proceedings of SIGKDD

    Google Scholar 

  • Vlachos M, Gunopulos D, Kollios G (2002b) Discovering similar multidimensional trajectories. In: Proceedings of ICDE

    Google Scholar 

  • Vlachos M, Hadjieleftheriou M, Gunopulos D, Keogh E (2006) Indexing multidimensional time-series. VLDB J 15(1):1–20

    Article  Google Scholar 

  • Yanagisawa Y, Akahani J, Satoh T (2003) Shape-based similarity query for trajectory of mobile objects. In: Proceedings of MDM

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pelekis, N., Theodoridis, Y. (2014). Preparing for Mobility Data Exploration. In: Mobility Data Management and Exploration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0392-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0392-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0391-7

  • Online ISBN: 978-1-4939-0392-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics