Skip to main content

Concepts, Values, and Methods for Technical Human–Computer Interaction Research

  • Chapter
  • First Online:
Ways of Knowing in HCI

Abstract

Technical HCI research seeks to improve the world by expanding the set of things that can be done with computational systems. This chapter considers this work as invention—the creation of new things—contrasted with activities of discovery which are concerned more with understanding the world. We discuss the values, goals, and criteria for success in this approach. Technical HCI research includes both directly contributing to some human need and indirectly contributing by enabling other technical work with things like toolkits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ACM SIGCHI Conference on Human Factors in Computing Systems, which is the largest HCI conference and seen by many as the most prestigious publication venue for HCI work.

  2. 2.

    This is the rate of display refresh (which is typically 50 or 60 times per second in order to avoid perceived flicker). This rate is of particular interest because even if internal updates to visual material occur faster than this, they will still never be presented to the user any faster than this.

References

  • Appert, C., & Beaudouin-Lafon, M. (2008). SwingStates: adding state machines to Java and the Swing toolkit. Software: Practice and Experience, 38(11), 1149–1182.

    Google Scholar 

  • Augsten, T., Kaefer, K., Meusel, R., Fetzer, C., Kanitz, D., Stoff, T., et al. (2010). Multitoe: high-precision interaction with back-projected floors based on high-resolution multi-touch input. Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology (UIST’ 10), (pp. 209–218).

    Google Scholar 

  • Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B., Ackerman, M. S., Karger, D. R., et al. (2010). Soylent: a word processor with a crowd inside. Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology (UIST’ 10), (pp. 313–322).

    Google Scholar 

  • Bernstein, M. S., Brandt, J., Miller, R. C., & Karger, D. R. (2011). Crowds in two seconds: enabling real-time crowd-powered interfaces. Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST’ 11), (pp. 33–42).

    Google Scholar 

  • Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A., Miller, R. C., et al. (2010) VizWiz: nearly real-time answers to visual questions. UIST 2010 (pp. 333–342).

    Google Scholar 

  • Buxton, W., Lamb, M. R., Sherman, D., & Smith, K. C. (1983). Towards a comprehensive user interface management system. SIGGRAPH Computer Graphics, 17(3), 35–42.

    Article  Google Scholar 

  • Card, S. K., English, W. K., & Burr, B. J. (1978). Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics, 21, 601–613.

    Article  Google Scholar 

  • Card, S. K., Mackinlay, J. D., & Robertson, G. G. (1990). The design space of input devices. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 90), (pp.117–124).

    Google Scholar 

  • Cardelli, L. (1988). Building user interfaces by direct manipulation. Proceedings of the 1st Annual ACM SIGGRAPH Symposium on User Interface Software (UIST’ 88), (pp. 152–166).

    Google Scholar 

  • Jayant, C., Ji, H., White, S., & Bigham, J. P. (2011). Supporting blind photography. In The proceedings of the 13th international ACM SIGACCESS conference on computers and accessibility (pp. 203–210). New York, NY: ACM.

    Chapter  Google Scholar 

  • Cohn, G., Morris, D., Patel, S. N., & Tan, D. S. (2011). Your noise is my command: sensing gestures using the body as an antenna. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '11), (pp. 791–800).

    Google Scholar 

  • Engelbart, C., & English, W. K. (1968). AFIPS Conference Proceedings of the 1968 Fall Joint Computer Conference, San Francisco, CA, December 1968, (Vol. 33, pp. 395–410)

    Google Scholar 

  • English, W. K., Engelbart, D. C., & Berman, M. L. (1967). Display-Selection Techniques for Text Manipulation. IEEE Transactions on Human Factors in Electronics, HFE-8(1), 5–15.

    Article  Google Scholar 

  • Feiner, S., MacIntyre, B., Hollerer, T., & Webster, A. (1997). A touring machine: Prototyping 3D mobile augmented reality systems for exploring the urban environment. Proceedings of the 1st IEEE International Symposium on Wearable Computers (ISWC’ 97), (pp. 74–81).

    Google Scholar 

  • Fogarty, J., Au, C., & Hudson, S.E. (2006). Sensing from the basement: A feasibility study of unobtrusive and low-cost home activity recognition. Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology (UIST’ 06), (pp. 91–100).

    Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391. Reprinted in Journal of Experimental Psychology: General, 1992, 121(3), 262–269.

    Article  Google Scholar 

  • Grossman, T., & Balakrishnan, R. (2005a). The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor’s activation area. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 05), (pp. 281–290).

    Google Scholar 

  • Grossman, T., & Balakrishnan, R. (2005b). A probabilistic approach to modeling two-dimensional pointing. ACM Transactions on Computer–Human Interaction, 12(3), 435–459.

    Article  Google Scholar 

  • Grossman, T., Kong, T., & Balakrishnan, R. (2007). Modeling pointing at targets of arbitrary shapes. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 07), (pp.463–472).

    Google Scholar 

  • Gupta, S., Chen, K. Y., Reynolds, M. S., & Patel, S. N. (2011). LightWave: Using compact fluorescent lights as sensors. Proceedings of the 13th International Conference on Ubiquitous Computing (UbiComp’ 11), (pp. 65–74).

    Google Scholar 

  • Harrison, B. L., Fishkin, K. P., Gujar, A., Mochon, C., & Want, R. (1998). Squeeze me, hold me, tilt me! An exploration of manipulative user interfaces. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 98), (pp. 17–24).

    Google Scholar 

  • Hinckley, K., Pierce, J., Sinclair, M., & Horvitz, E. (2000). Sensing techniques for mobile interaction. Proceedings of the 13th Annual ACM Symposium on User Interface Software and Technology (UIST’ 00), (pp. 91–100).

    Google Scholar 

  • Hudson, S. E., Mankoff, J., & Smith, I. (2005). Extensible input handling in the subArctic toolkit. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 05), (pp. 381–390).

    Google Scholar 

  • Hullot, J. M. (1986). SOS Interface. Proceedings of the 3rd Workshop on Object Oriented Programming, Paris, France, Jan. 1986.

    Google Scholar 

  • Ishii, H., Kobayashi, M., & Arita, K. (1994). Iterative design of seamless collaboration media. Communications of the ACM, 37(8), 83–97.

    Article  Google Scholar 

  • Jacob, R. J. K. (1986). A specification language for direct-manipulation user interfaces. ACM Transactions on Graphics, 5(4), 283–317.

    Article  Google Scholar 

  • Kelley, J. F. (1983). Natural language and computers: Six empirical steps for writing an easy-to-use computer application. Doctoral dissertation, The Johns Hopkins University, Maryland.

    Google Scholar 

  • Kelley, J. F. (1984). An iterative design methodology for user-friendly natural language office information applications. ACM Transactions on Information Systems, 2(1), 26–41.

    Article  MathSciNet  Google Scholar 

  • Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., & Kurtenbach, G. (2004). A remote control interface for large displays. Proceedings of the 17th Annual ACM Symposium on User Interface Software and Technology (UIST’ 04), (pp. 127–136).

    Google Scholar 

  • Lasecki, W. S., Miller, C. D., Kushalnagar, R. S., Bigham, J. P. (2013). Legion scribe: real-time captioning by the non-experts. W4A 2013 (pp. 22).

    Google Scholar 

  • MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer interaction. Human–Computer Interaction, 7, 91–139.

    Article  Google Scholar 

  • MacKenzie, I. S. (2002). KSPC (keystrokes per character) as a characteristic of text entry techniques. In Fabio Paternò (Ed.), Proceedings of the 4th international symposium on mobile human–computer interaction (Mobile HCI’ 02), (pp. 195–210).

    Google Scholar 

  • Mankoff, J., Hudson, S. E., Abowd, G. D. (2000a). Providing integrated toolkit-level support for ambiguity in recognition-based interfaces. Proceedings of CHI 2000, (pp. 368–375).

    Google Scholar 

  • Mankoff, J., Hudson, S. E., & Abowd, G. D. (2000b). Interaction techniques for ambiguity resolution in recognition-based interfaces. Proceedings of UIST 2000, (pp. 11–20).

    Google Scholar 

  • Matthews, T., Fong, J., Ho-Ching, F. W.-L., & Mankoff, J. (2006). Evaluating visualizations of non-speech sounds for the deaf. Behavior and Information Technology, 25(4), 333–351.

    Article  Google Scholar 

  • McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115–133.

    Google Scholar 

  • Meyer, D. E., Smith, K. J. E., Kornblum, S., Abrams, R. A., & Wright, C. E. (1990). Speed-accuracy tradeoffs in aimed movements: Toward a theory of rapid voluntary action. In M. Jeanerod (Ed.), Attention and performance XIII (pp. 173–226). Erlbaum: Hillsdale, NJ.

    Google Scholar 

  • Myer, B. A. (1990). A new model for handling input. ACM Transactions on Information Systems, 8(3), 289–320.

    Article  Google Scholar 

  • Myers, B. A., McDaniel, R. G., Miller, R. C., Ferrency, A. S., Faulring, A., Kyle, B. D., et al. (1997). The Amulet environment: New models for effective user interface software development. IEEE Transactions on Software Engineering, 23(6), 347–365.

    Article  Google Scholar 

  • Myers, B., Hudson, S. E., & Pausch, R. (2000). Past, present, and future of user interface software tools. ACM Transactions on Computer-Human Interaction, 7(1), 3–28.

    Article  Google Scholar 

  • Mynatt, E.D., Essa, I., & Rogers, W. (2000). Increasing the opportunities for aging in place. Proceedings on the 2000 Conference on Universal Usability (CUU’ 00) (pp. 65–71).

    Google Scholar 

  • Mynatt, E. D., Rowan, J., Craighill, S., & Jacobs, A. (2001). Digital family portraits: supporting peace of mind for extended family members. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 01), (pp. 333–340).

    Google Scholar 

  • Newman, W.M. (1968). A system for interactive graphical programming. Proceedings of the April 30–May 2, 1968, Spring Joint Computer Conference (AFIPS’ 68 (Spring)) (pp. 47–54).

    Google Scholar 

  • Patel, S. N., Robertson, T., Kientz, J. A., Reynolds, M. S., & Abowd, G. D. (2007). At the flick of a switch: Detecting and classifying unique electrical events on the residential power line. Proceedings of the 9th International Conference on Ubiquitous Computing (Ubicomp’ 07), (pp. 271–288).

    Google Scholar 

  • Schwarz, J., Harrison, C., Hudson, S., & Mankoff, J. (2010a). Cord input: An intuitive, high-accuracy, multi-degree-of-freedom input method for mobile devices. Proceedings of CHI’ 10, (pp. 1657–1660).

    Google Scholar 

  • Schwarz, J., Hudson, S., & Mankoff, J. (2010b) A robust and flexible framework for handling inputs with uncertainty. Proceedings of UIST’ 10, (pp. 47–56).

    Google Scholar 

  • Schwarz, J., Mankoff, J., & Hudson, S. (2011). Monte Carlo methods for managing interactive state, action and feedback under uncertainty. Proceedings of the 24th annual ACM symposium on user interface software and technology (UIST’ 11), (pp. 235–244). New York, NY: ACM.

    Google Scholar 

  • Shoemaker, G., Tang, A., & Booth, K. S. (2007). Shadow reaching: a new perspective on interaction for large displays. Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology (UIST’ 07), (pp. 53–56).

    Google Scholar 

  • Sutherland, I. E. (1963). SketchPad: A man–machine graphical communication system. AFIPS Conference Proceedings, 23, 323–328.

    Google Scholar 

  • Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1, 511–518.

    Google Scholar 

  • von Ahn, L., & Dabbish, L. (2008). Designing games with a purpose. Communications of the ACM, 51(8), 58–67.

    Google Scholar 

  • Wasserman, A. I. (1985). Extending state transition diagrams for the specification of human-computer interaction. IEEE Transactions on Software Engineering, 11(8), 699–713.

    Article  Google Scholar 

  • Wobbrock, J. O, Cutrell, E., Harada, S., & MacKenzie, I. S. (2008). An error model for pointing based on Fitts’ law. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’ 08), (pp. 1613–1622).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Hudson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hudson, S.E., Mankoff, J. (2014). Concepts, Values, and Methods for Technical Human–Computer Interaction Research. In: Olson, J., Kellogg, W. (eds) Ways of Knowing in HCI. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0378-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0378-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0377-1

  • Online ISBN: 978-1-4939-0378-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics