Airy Processes and Variational Problems

  • Jeremy QuastelEmail author
  • Daniel Remenik
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 69)


We review the Airy processes—their formulation and how they are conjectured to govern the large time, large distance spatial fluctuations of 1-D random growth models. We also describe formulae which express the probabilities that they lie below a given curve as Fredholm determinants of certain boundary value operators, and the several applications of these formulae to variational problems involving Airy processes that arise in physical problems, as well as to their local behaviour.


Fredholm Determinant Stochastic Heat Equation Gaussian Unitary Ensemble Gaussian Orthogonal Ensemble Airy Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55, pp. xiv+1046. In: National Bureau of Standards Applied Mathematics Series. Dover, Mineola (1964)Google Scholar
  2. 2.
    Alberts, T., Khanin, K., Quastel, J.: Intermediate disorder regime for 1 + 1 dimensional directed polymers. arXiv: 1202.4398 (2012)Google Scholar
  3. 3.
    Alberts, T., Khanin, K., Quastel, J.: The continuum directed random polymer. arXiv: 1202.4403 (2012)Google Scholar
  4. 4.
    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Comm. Pure Appl. Math. 64(4), 466–537 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. In: Bollobás, B., et al. (eds.) Cambridge Studies in Advanced Mathematics, vol. 118, pp. xiv+492. Cambridge University Press, Cambridge (2010)Google Scholar
  6. 6.
    Auffinger, A., Damron, M.: A simplifed proof of the relation between scaling exponents in first-passage percolation. arXiv: 1109.0523 (2011)Google Scholar
  7. 7.
    Auffinger, A., Damron, M.: The scaling relation χ = 2ξ - 1 for directed polymers in a random environment. arXiv: 1211.0992 (2012)Google Scholar
  8. 8.
    Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100(3-4), 523–541 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Baik, J., Rains, E.M.: Symmetrized random permutations. In: Bleher, P., Its, A. (eds.) Random Matrix Models and Their Applications, vol. 40, pp. 1–19. Cambridge Univ. Press, Cambridge (2001) (Math. Sci. Res. Inst. Publ.)Google Scholar
  10. 10.
    Baik, J., Liu, Z.: On the average of the Airy process and its time reversal. arXiv: 1308.1070 (2013)Google Scholar
  11. 11.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12(4), 1119–1178 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Baik, J., Buckingham, R., DiFranco, J.: Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function. Comm. Math. Phys. 280(2), 463–497 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63(8), 1017–1070 (2010)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Baik, J., Liechty, K., Schehr, G.: On the joint distribution of the maximum and its position of the Airy2 process minus a parabola. arXiv: 1205.3665 (2012)Google Scholar
  15. 15.
    Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183(3), 571–607 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields. 16(4), 803–866 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comp. 79(270), 871–915 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Borodin, A.: Determinantal point processes. In: Akemann, G., et al. (eds.) The Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)Google Scholar
  19. 19.
    Borodin, A., Olshanski, G.: Distributions on partitions, point processes, and the hypergeometric kernel. Comm. Math. Phys. 211(2), 335–358 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Borodin, A.N., Salminen, P.: Handbook of Brownian Motion|Facts and Formulae, 2nd edn., pp. xvi+672. In: Resnick, S.I., et al. (eds.) Probability and its Applications. Birkhäuser, Basel (2002).Google Scholar
  21. 21.
    Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121(3-4), 291–317 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Borodin, A., Corwin, I.: Macdonald processes. Prob. Theory Relat. Fields. arXiv: 1111.4408 (2011, in press)Google Scholar
  23. 23.
    Borodin, A., Gorin, V.: Lectures on integrable probability. arXiv: 1212.3351 (2012)Google Scholar
  24. 24.
    Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths. I. PushASEP. Electron. J. Probab. 13(50), 1380–1418 (2008)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Borodin, A., Ferrari, P.L., Prähofer, M.: Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process. Int. Math. Res. Pap., 2007, Art. ID rpm00–2, 47 (2007)Google Scholar
  26. 26.
    Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129(5-6), 1055–1080 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Large time asymptotics of growth models on space-like paths. II. PNG and parallel TASEP. Comm. Math. Phys. 283(2), 417–449 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Transition between Airy1 and Airy2 processes and TASEP fluctuations. Comm. Pure Appl. Math. 61(11), 1603–1629 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Borodin, A., Ferrari, P.L., Sasamoto, T.: Two speed TASEP. J. Stat. Phys. 137(5-6), 936–977 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Comm. Pure. Appl. Math. (2012, in press) (arXiv: 1204.1024)Google Scholar
  31. 31.
    Borodin, A., Corwin, I., Remenik, D.: Log-Gamma polymer free energy fluctuations via a Fredholm determinant identity. Comm. Math. Phys. 324(1), 1–18 (2013). doi: 10.1007/s00220-013-1750-xCrossRefMathSciNetGoogle Scholar
  32. 32.
    Borodin, A., Corwin, I., Remenik, D.: Multiplicative functionals on ensembles of non-intersecting paths. Ann. Inst. Henri Poincaré Probab. Stat. (in press)Google Scholar
  33. 33.
    Bothner, T., Liechty, K.: Tail decay for the distribution of the endpoint of a directed polymer. Nonlinearity. 26(5), 144–9 (2013)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Chatterjee, S.: The universal relation between scaling exponents in first-passage percolation. Ann. Math. (2012, in press).Google Scholar
  35. 35.
    Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math. (2011, in press) (arXiv: 1108.2291)Google Scholar
  36. 36.
    Corwin, I., Quastel, J.: Renormalization xed point of the KPZ universality class. arXiv: 1103.3422 (2011)Google Scholar
  37. 37.
    Corwin, I., Hammond, A.: The H-Brownian Gibbs property of the KPZ line ensemble (2012, in preparation)Google Scholar
  38. 38.
    Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140(2), 232–267 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ growth. Ann. Inst. Henri Poincaré Probab. Stat. 48(1), 134–150 (2012)CrossRefzbMATHGoogle Scholar
  40. 40.
    Corwin, I., O’Connell, N., Seppäläinen, T., Zygouras, N.: Tropical combinatorics and Whittaker functions. Duke Math. J. (2011, in press) (arXiv: 1110.3489)Google Scholar
  41. 41.
    Corwin, I., Quastel, J., Remenik, D.: Continuum statistics of the airy2 process. Comm. Math. Phys. 317(2), 347–362 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Corwin, I., Liu, Z., Wang, D.: (in preparation)Google Scholar
  43. 43.
    Eynard, B., Mehta, M.L.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A. 31(19), 4449–4456 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Feierl, T.: The height and range of watermelons without wall. In: Fiala, J., et al. (eds.) Combinatorial Algorithms. Lecture Notes in Computer Science, vol. 5874, pp. 242–253. Springer, Berlin (2009)Google Scholar
  45. 45.
    Ferrari, P.L.: Slow decorrelations in Kardar–Parisi–Zhang growth. J. Stat. Mech. 07(2008), P0702–2 (2008)Google Scholar
  46. 46.
    Ferrari, P.L., Frings, R.: On the spatial persistence for airy processes. J. Stat. Mech. 02(2013), P0200–1 (2013)Google Scholar
  47. 47.
    Ferrari, P.L., Spohn, H.: A determinantal formula for the GOE Tracy-Widom distribution. J. Phys. A. 38(33), L557–L561 (2005)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Fisher, M.E.: Walks, walls, wetting, and melting. J. Stat. Phys. 34(5), 667–729 (1984)CrossRefzbMATHGoogle Scholar
  49. 49.
    Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonalunitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B. 553(3), 601–643 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Forrester, P.J., Majumdar, S.N., Schehr, G.: Non-intersecting brownian walkers and Yang-Mills theory on the sphere. Nucl. Phys. B. 844(3), 500–526 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Gessel, I., Viennot, G.: Binomial determinants, paths, and hook length formulae. Adv. Math. 58(3), 300–321 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Groeneboom, P. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Relat. Fields. 81(1), 79–109 (1989)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Hägg, J.: Local Gaussian fluctuations in the Airy and discrete PNG processes. Ann. Probab. 36(3), 1059–1092 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Hairer, M.: Solving the KPZ equation. Ann. Math. 178(2), 559–664 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys. Rep. 254(4–6), 215–414 (1995)CrossRefGoogle Scholar
  56. 56.
    Johansson, K.: Shape fluctuations and random matrices. Comm. Math. Phys. 209(2), 437–476 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Johansson, K.: Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242(1-2), 277–329 (2003)zbMATHMathSciNetGoogle Scholar
  58. 58.
    Johansson, K.: Random matrices and determinantal processes. In: Bovier, A., et al. (eds.) Mathematical Statistical Physics, pp. 1–55. Elsevier, Amsterdam (2006)Google Scholar
  59. 59.
    Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamical scaling of growing interfaces. Phys. Rev. Lett. 56(9), 889–892 (1986)CrossRefzbMATHGoogle Scholar
  60. 60.
    Karlin, S., McGregor, J.: Coincidence probabilities. Pac. J. Math. 9, 1141–1164 (1959)CrossRefzbMATHMathSciNetGoogle Scholar
  61. 61.
    Lindström, B.: On the vector representations of induced matroids. Bull. Lond. Math. Soc. 5, 85–90 (1973)CrossRefzbMATHGoogle Scholar
  62. 62.
    Macêdo, A.M.S.: Universal parametric correlations at the soft edge of the spectrum of random matrix ensembles. Europhys. Lett. 26(9), 64–1 (1994)CrossRefGoogle Scholar
  63. 63.
    Mehta, M.L.: Random Matrices, 2nd edn., pp. xviii+562. Academic, Boston (1991)Google Scholar
  64. 64.
    Mézard, M., Parisi, G.: A variational approach to directed polymers. J. Phys. A. 25(17), 4521–4534 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  65. 65.
    Moreno Flores, G., Quastel, J., Remenik, D.: Endpoint distribution of directed polymers in 1 + 1 dimensions. Comm. Math. Phys. 317(2), 363–380 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  66. 66.
    O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Pimentel, L.P.R.: On the location of the maximum of a continuous stochastic process. arXiv: 1207.4469 (2012)Google Scholar
  68. 68.
    Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108(5-6), 1071–1106 (2002)CrossRefzbMATHGoogle Scholar
  69. 69.
    Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech. Theor. Exp. 2011(03), P0302–0 (2011)CrossRefGoogle Scholar
  70. 70.
    Quastel, J., Remenik, D.: Local Brownian property of the narrow wedge solution of the KPZ equation. Electron. Comm. Probab. 16, 712–719 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  71. 71.
    Quastel, J., Remenik, D.: Tails of the endpoint distribution of directed polymers. Ann. Inst. Henri Poincaré Probab. Stat. (2012, in press) (arXiv: 1203.2907)Google Scholar
  72. 72.
    Quastel, J., Remenik, D.: Local behavior and hitting probabilities of the Airy1 process. Probab. Theory Relat. Fields. 157(3-4), 605–634 (2013). doi: 10.1007/s00440-012-0466-8CrossRefzbMATHMathSciNetGoogle Scholar
  73. 73.
    Quastel, J., Remenik, D.: Supremum of the airy2 process minus a parabola on a half line. J. Stat. Phys. 150(3), 442–456 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  74. 74.
    Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Europhys. Lett. 91(6), 6000–6 (2010)CrossRefGoogle Scholar
  75. 75.
    Rambeau, J., Schehr, G.: Distribution of the time at which n vicious walkers reach their maximal height. Phys. Rev. E. 83(6), 06114–6 (2011)Google Scholar
  76. 76.
    Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A: Math. Gen. 38(33), L549 (2005)CrossRefMathSciNetGoogle Scholar
  77. 77.
    Schehr, G.: Extremes of N vicious walkers for large N: application to the directed polymer and KPZ interfaces. I. Stat. Phys. 149(3), 385–410 (2012) (arXiv:1203.1658)CrossRefzbMATHMathSciNetGoogle Scholar
  78. 78.
    Schehr, G., Majumdar, S.N., Comtet, A., Randon-Furling, J.: Exact distribution of the maximal height of p vicious walkers. Phys. Rev. Lett. 101(15), 150601 (2008)CrossRefMathSciNetGoogle Scholar
  79. 79.
    Simon, B.: Trace Ideals and Their Applications, 2nd edn. In: Bona, J.L., et al. (eds.) Mathematical Surveys and Monographs, vol. 120, pp. viii+150. American Mathematical Society, Providence (2005)Google Scholar
  80. 80.
    Takeuchi, K., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104(23), 230601 (2010)CrossRefGoogle Scholar
  81. 81.
    Takeuchi, K., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147(5), 853–890 (2012)CrossRefzbMATHGoogle Scholar
  82. 82.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159(1), 151–174 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  83. 83.
    Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177(3), 727–754 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  84. 84.
    Tracy, C.A., Widom, H.: Differential equations for Dyson processes. Comm. Math. Phys. 252(1-3), 7–41 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  85. 85.
    Tracy, C.A., Widom, H.: The Pearcey process. Comm. Math. Phys. 263(2), 381–400 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  86. 86.
    Tracy, C.A., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17(3), 953–979 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  87. 87.
    Tracy, C.A., Widom, H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132(2), 291–300 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  88. 88.
    Tracy, C.A., Widom, H. Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279(3), 815–844 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  89. 89.
    Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Comm. Math. Phys. 290(1), 129–154 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  90. 90.
    Vallée, O., Soares, M.: Airy functions and applications to physics, 2nd edn., pp. x+202. Imperial College Press, London (2010)Google Scholar
  91. 91.
    von Koch, H.: Sur les déterminants infinis et les équations différentielles linéaires. Acta Math. 16(1), 217–295 (1892)CrossRefzbMATHMathSciNetGoogle Scholar
  92. 92.
    Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. (ed.) École d'étéde probabilités de Saint-Flour, XIV—1984. Lecture Notes in Mathematics, vol. 1180, pp. 265–439. Springer, Berlin (1986)Google Scholar
  93. 93.
    Widom, H.: On asymptotics for the Airy process. J. Stat. Phys. 115(3-4), 1129–1134 (2004)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Departamento de Ingenieria Matemática and Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile

Personalised recommendations