Advertisement

Selected Topics in Random Walks in Random Environment

  • Alexander Drewitz
  • Alejandro F. Ramírez
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 69)

Abstract

Random walk in random environment (RWRE) is a fundamental model of statistical mechanics, describing the movement of a particle in a highly disordered and inhomogeneous medium as a random walk with random jump probabilities. It has been introduced in a series of papers as a model of DNA chain replication and crystal growth (see Chernov [10] and Temkin [51, 52]), and also as a model of turbulent behavior in fluids through a Lorentz gas description (Sinai 1982 [42]). It is a simple but powerful model for a variety of complex large-scale disordered phenomena arising from fields such as physics, biology, and engineering. While the one-dimensional model is well-understood in the multidimensional setting, fundamental questions about the RWRE model have resisted repeated and persistent attempts to answer them. Two major complications in this context stem from the loss of the Markov property under the averaged measure as well as the fact that in dimensions larger than one, the RWRE is not reversible anymore. In these notes we present a general overview of the model, with an emphasis on the multidimensional setting and a more detailed description of recent progress around ballisticity questions.

Keywords

Random Walk Invariant Measure Random Environment Environmental Process Large Deviation Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The final version has benefitted from careful refereeing. We would also like to thank Gregorio Moreno for useful comments on the first draft of this text.

References

  1. 1.
    Alili, S.: Asymptotic behavior for random walks in random environments. J. Appl. Prob. 36, 334–349 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Berger, N.: Limiting velocity of high-dimensional random walk in random environment. Ann. Probab. 36(2), 728–738 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berger, N.: Slowdown estimates for ballistic random walk in random environment. J. Eur. Math. Soc. (JEMS). 14(1), 127–173 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Berger, N., Deuschel, J.D.: A quenched invariance principle for non-elliptic random walk in i.i.d. balanced random environment. Probab. Theory Relat. Fields. arXiv:1108.3995 [math.PR]Google Scholar
  5. 5.
    Berger, N., Drewitz, A., Ramírez, A.F.: Effective polynomial ballisticity condition for random walk in random environment in all dimensions. Comm. Pure Appl. Math. arXiv:1206.6377v2 [math.PR]Google Scholar
  6. 6.
    Bolthausen, E., Sznitman, A.-S.: Ten Lectures on Random Media. DMV Seminar, vol. 32. Birkhäuser Verlag, Basel (2002)Google Scholar
  7. 7.
    Bolthausen, E., Sznitman, A.-S.: On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. (Special issue dedicated to Daniel W. Stroock and Srinivasa S. R. Varadhan on the occasion of their 60th birthday). 9(3), 345–375 (2002)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Campos, D., Ramírez, A.F.: Ellipticity criteria for ballistic behavior of random walks in random environment. Probab. Theory Relat. Fields. arXiv:1212.4020v2 [math.PR]Google Scholar
  9. 9.
    Campos, D., Drewitz, A., Rassoul-Agha, F., Ramírez, A.F., Seppäläinen, T.: Level 1 quenched large deviation principle for random walk in dynamic random environment. Bull. Inst. Math. Acad. Sin. (N.S.) (In honor of the 70th birthday of S.R.S Varadhan). 8(1), 1–29 (2013)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Chernov, A.A.: Replication of a multicomponent chain by the “lightning mechanism”. Biophys. 12(2), 336–341 (1967)MathSciNetGoogle Scholar
  11. 11.
    Comets, F., Menshikov, M., Popov, S.: Lyapunov functions for random walks and strings in random environment. Ann. Probab. 26(4), 1433–1445 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Comets, F., Gantert, N., Zeitouni, O.: Quenched, annealed and functional large deviations for one-dimensional random walk in random environment. Probab. Theory Relat. Fields. 118(1), 65–114 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Conze, J.-P., Guivarc’h, Y.: Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique. Colloq. Math. 84/85(2), 457–480 (2000)MathSciNetGoogle Scholar
  14. 14.
    Drewitz, A., Ramírez, A.F.: Asymptotic direction in random walks in random environment revisited. Braz. J. Probab. Stat. 24(2), 212–225 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Drewitz, A., Ramírez, A.F.: Ballisticity conditions for random walk in random environment. Probab. Theory Relat. Fields. 150(1–2), 61–75 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Drewitz, A., Ramírez, A.F.: Quenched exit estimates and ballisticity conditions for higher-dimensional random walk in random environment Ann. Probab. 40(2), 459–534 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Dunford, N., Schwartz, J.T.: Linear Operators. Part I. John Wiley & Sons Inc., New York (1988)zbMATHGoogle Scholar
  18. 18.
    Fayolle, G., Malyshev, V.A., Menshikov, M.V.: Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Goergen, L.: Limit velocity and zero-one laws for diffusions in random environment. Ann. Appl. Probab. 16(3), 1086–1123 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Greven, A., den Hollander, F.: Large deviations for a random walk in random environment. Ann. Probab. 22(3), 1381–1428 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Guo, X., Zeitouni, O.: Quenched invariance principle for random walks in balanced random environment. Probab. Theory Relat. Fields. 152, 207–230 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Kalikow, S.A.: Generalized random walk in a random environment. Ann. Probab. 9(5), 753–768 (1981)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Kesten, H.: Sums of stationary sequences cannot grow slower than linearly. Proc. Am. Math. Soc. 49, 205–211 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kesten, H., Kozlov, M.V., Spitzer, F.: A limit law for random walk in a random environment. Compos. Math. 30, 145–168, (1975)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Kosygina, E., Zerner, M.P.W.: Excursions of excited random walks on integers. arXiv:1307.6830v1 (2013)Google Scholar
  26. 26.
    Kosygina, E., Rezakhanlou, F., Varadhan, S.R.S.: Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Comm. Pure Appl. Math. 59(10), 1489–1521 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Kozlov, S.M.: The averaging method and walks in inhomogeneous environments. Russ. Math. Surv. 40(2), 73–145 (1985)CrossRefzbMATHGoogle Scholar
  28. 28.
    Kuo, H.J., Trudinger, N.S.: Linear elliptic difference inequalities with random coefficients. Math. Comput. 55(191), 37–58 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lawler, G.: Weak convergence of a random walk in a random environment. Comm. Math. Phys. 87(1), 81–87 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Lenci, M.: Random walks in random environments without ellipticity. Stochastic Process. Appl. 123(5), 1750–1764 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Liggett, T.: An improved subadditive ergodic theorem. Ann. Probab. 13(4), 1279–1285 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Rassoul-Agha, F.: The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31(3), 1441–1463 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Rassoul-Agha, F., Seppäläinen, T.: Process-level quenched large deviations for random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 47(1), 214–242 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rezakhanlou, F.: A prelude to the theory of random walks in random environments. Bull. Iranian Math. Soc. 37(2), 5–20 (2011)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Rosenbluth, J.: Quenched large deviations for multidimensional random walk in random environment: a variational formula. Thesis (Ph.D.), New York University (2006)Google Scholar
  36. 36.
    Sabot, C.: Random walks in random Dirichlet environment are transient in dimension \(d\ge 3\). Probab. Theory Relat. Fields. 151(1–2), 297–317 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Sabot, C.: Random Dirichlet environment viewed from the particle in dimension \(d\ge 3\). Ann. Probab. 41(2), 722–743 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Sabot, C., Tournier, L.: Reversed Dirichlet environment and directional transience of random walks in Dirichlet random environment. Ann. Inst. H. Poincaré. 47(1), 1–8 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Simenhaus, F.: Asymptotic direction for random walks in random environments. Ann. Inst. H. Poincaré. 43(6), 751–761 (2007)CrossRefzbMATHGoogle Scholar
  40. 40.
    Simenhaus, F.: Marches Aléatoires en Milieux Aléatoires–Étude de quelques Modèles Multidimensionnels. PhD thesis, Université Paris 7—Denis Diderot (2008)Google Scholar
  41. 41.
    Sinai, Y.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Prob. Appl. 27, 256–268 (1982)Google Scholar
  42. 42.
    Sinai, Y.: Lorentz gas and random walks. Math. Probl. Theor. Phys., Lect. Notes Phys. 153, 12–14 (1982)CrossRefGoogle Scholar
  43. 43.
    Smith, W.L., Wilkinson, W.E.: On branching processes in random environments. Ann. Math. Statist. 40, 814–827 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Solomon, F.: Random walks in random environment. Ann. Probab. 3, 1–31 (1975)CrossRefzbMATHGoogle Scholar
  45. 45.
    Sznitman, A.-S.: Slowdown estimates and central limit for random walks in random environment. J. Eur. Math. Soc. (JEMS). 2(2), 93–143 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Sznitman, A.-S.: On a class of transient random walks in random environment. Ann. Probab. 29(2), 724–765 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Sznitman, A.-S.: An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Relat. Fields. 122(4), 509–544 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Sznitman, A.-S.: Topics in random walks in random environment. Sch. Conf. Probab. Theory, ICTP Lect. Notes. XVII, 203–266 (2004).MathSciNetGoogle Scholar
  49. 49.
    Sznitman, A.-S., Zerner, M.: A law of large numbers for random walks in random environment. Ann. Probab. 27(4), 1851–1869 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Tavaré, S., Zeitouni, O.: Lectures on probability theory and statistics, vol. 1837 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004. Lectures from the 31st Summer School on Probability Theory held in Saint-Flour, July 8-25, 2001, edited by Jean PicardGoogle Scholar
  51. 51.
    Temkin, D.E.: The theory of diffusionless crystal growth. J. Cryst. Growth. 5(3), 193–202 (1969)CrossRefGoogle Scholar
  52. 52.
    Temkin, D.E.: One-dimensional random walks in a two-component chain. Dokl. Akad. Nauk SSSR. 206, 27–30 (1972)MathSciNetGoogle Scholar
  53. 53.
    Tournier, L.: Integrability of exit times and ballisticity for random walks in Dirichlet environment. Electron. J. Probab. 14(16), 431–451 (2009)zbMATHMathSciNetGoogle Scholar
  54. 54.
    Varadhan, S.R.S.: Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56(8), 1222–1245 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Yilmaz, A.: Quenched large deviations for random walk in a random environment. Comm. Pure Appl. Math. 62(8), 1033–1075 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Zeitouni, O.: Random walks in random environment. XXXI Summer school in Probability, St. Flour (2001). Lecture Notes in Math., vol. 1837, 193–312. Springer, Berlin (2004)Google Scholar
  57. 57.
    Zerner, M.P.W.: Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26(4), 1446–1476 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Zerner, M.P.W.: A non-ballistic law of large numbers for random walks in i.i.d. random environment. Electron. Comm. Probab. 7, 191–197 (electronic) (2002)CrossRefMathSciNetGoogle Scholar
  59. 59.
    Zerner, M.P.W.: The zero-one law for planar random walks in i.i.d random environments revisited. Electron. Comm. Probab. 12, 326–335 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Zerner, M.P.W., Merkl, F.: A zero-one law for planar random walks in random environment. Ann. Probab. 29(4), 1716–1732 (2001)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexander Drewitz
    • 1
  • Alejandro F. Ramírez
    • 2
  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations