Advertisement

Coarsening in 2D Slabs

  • Michael DamronEmail author
  • Hana Kogan
  • Charles M. Newman
  • Vladas Sidoravicius
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 69)

Abstract

We study coarsening; that is, the zero-temperature limit of Glauber dynamics in the standard Ising model on slabs of all thicknesses (with free and periodic boundary conditions in the third coordinate). We show that with free boundary conditions, for \(k\geq 3\), some sites fixate for large times and some do not, whereas for k = 2, all sites fixate. With periodic boundary conditions, for \(k \geq 4\), some sites fixate and others do not, while for k = 2 and 3, all sites fixate.

Keywords

Periodic Boundary Condition Ising Model Free Boundary Condition Glauber Dynamic Bootstrap Percolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

M. D. thanks C. M. N. and the Courant Institute for support.

References

  1. 1.
    Arratia, R.: Site recurrence for annihilating random walks on \({Z}^d\). Ann. Probab. 11, 706–713 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Damron, M., Kogan, H., Newman, C. and Sidoravicius, V. (2013). Fixation for coarsening dynamics in 2D slabs. Electron. J. Probab. (18) 105 1–20.Google Scholar
  3. van Enter, A.C.D. (1987). Proof of Straley’s argument for bootstrap percolation. J. Statist. Phys.48 943–945.4. Fontes, L.R., SchonmannGoogle Scholar
  4. 3.
    Fontes, L.R., Schonmann, R.H., Sidoravicius, V.: Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228, 495–518 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 4.
    Krapivsky, P.L., Redner, S., Ben-Naim, E.: A Kinetic View of Statistical Physics, p. 50–4. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  6. 5.
    Nanda S., Newman C.M., Stein, D.L.: Dynamics of Ising spin systems at zero temperature. In On Dobrushin’s Way (from Probability Theory to Statistical Mechanics), Minlos R., Shlosman S., Suhov Y. (eds.): Amer. Math. Soc. Transl. 198(2), 183–193 (2000)Google Scholar
  7. 6.
    Newman, C.M., Stein, D.L.: Zero-temperature dynamics of Ising spin systems following a deep quench: Results and open problems. Physica A. 279, 159–168 (2000)CrossRefMathSciNetGoogle Scholar
  8. 7.
    Stauffer, D.: Ising spinodal decomposition at T = 0 in one to five dimensions. J. Phys. A. 27, 5029–5032 (1994)CrossRefMathSciNetGoogle Scholar
  9. 8.
    van Enter, A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Statist. Phys. 48, 943–945 (1987)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Michael Damron
    • 1
    Email author
  • Hana Kogan
    • 2
  • Charles M. Newman
    • 3
  • Vladas Sidoravicius
    • 4
  1. 1.Indiana University, BloomingtonBloomingtonUSA
  2. 2.Courant InstituteNYUNew YorkUSA
  3. 3.Courant InstituteNYUNew YorkUSA
  4. 4.IMPAEstrada Dona CastorinaRio de JaneiroBrazil

Personalised recommendations