Two Ways to Solve ASEP

  • Ivan CorwinEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 69)


The purpose of this chapter is to describe two approaches to compute exact formulas (which are amenable to asymptotic analysis) for the probability distribution of the current of particles past a given site in the asymmetric simple exclusion process (ASEP) with step initial data. The first approach is via a variant of the coordinate Bethe Ansatz and was developed in work of Tracy and Widom in 2008–2009, while the second approach is via a rigorous version of the replica trick and was developed in work of Borodin, Sasamoto and the author in 2012.


Asymmetric Simple Exclusion Process (ASEP) Sasamoto Replica Trick Bethe Ansatz Step Initial Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author was partially supported by the NSF through grant DMS-1208998, PIRE grant OISE-07-30136 as well as by Microsoft Research through the Schramm Memorial Fellowship, and by the Clay Mathematics Institute.


  1. 1.
    Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bethe, H.A.: Zur theorie der metalle. i. eigenwerte und eigenfunktionen der linearen atomkette. Z. Phys. 71, 205 (1931)CrossRefGoogle Scholar
  4. 4.
    Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields. 158(1–2), 225–400 (2014) (arXiv:1111.4408)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. arXiv:1207.5035.Google Scholar
  6. 6.
    Corwin, I.: The Kardar-Parisi-Zhang equation and universality class.arXiv:1106.1596 Random Matrices: Theory Appl. 1 (2012) 1130001.Google Scholar
  7. 7.
    Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schroedinger model. Commun. Math. Physics. 154, 347–376 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Gärtner, J.: Convergence towards Burgers equation and propagation of chaos for weakly asymmetric exclusion process. Stoch. Proc. Appl. 27, 233–260 (1988)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gwa, L.H., Spohn, H.: Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation. Phys. Rev. A. 46, 844–854 (1992)CrossRefGoogle Scholar
  10. 10.
    Hahn, W.: Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr. 2, 340–379 (1949)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 145, 139–173 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Imamura, T., Sasamoto, T.: Current moments of 1D ASEP by duality. J. Stat. Phys. 142, 919–930 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kardar, M.: Replica-Bethe Ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B. 290, 582–602 (1987)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kardar, K., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    Lieb, E.H., Liniger, W.: Exact analysis of an interacting bose gas. I. The general solution and the ground state. Phys. Rev. Lett. 130, 1605–1616 (1963)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Liggett, T.: Interacting Particle Systems. Spinger-Verlag, Berlin (2005)zbMATHGoogle Scholar
  18. 18.
    MacDonald, J., Gibbs, J., Pipkin, A.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers. 6 (1968)Google Scholar
  19. 19.
    Oxford, S.: The Hamiltonian of the quantized nonlinear Schrödinger equation. UCLA (1979)Google Scholar
  20. 20.
    Prolhac, S., Spohn, H.: The propagator of the attractive delta-Bose gas in one dimension. J. Math. Phys. 52, 12210–6 (2011)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Sasamoto, T., Spohn, H.: The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140, 209–231 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Schütz, G.M.: Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88, 427–445 (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Schütz, G.M.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86, 1265–1287 (1997)CrossRefzbMATHGoogle Scholar
  24. 24.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Sutherland, B.: Beautiful Models: 70 Years of Exactly Solvable Quantum Many-Body Problems. World Scientific (2004)Google Scholar
  26. 26.
    Tracy, C., Widom, H.: A Fredholm determinant representation in ASEP. J. Stat. Phys. 132, 291–300 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Tracy, C., Widom, H.: The dynamics of the one-dimensional delta-function Bose gas. J. Phys. A. 41, 48520–4 (2008)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Tracy, C., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008). (Erratum: Commun. Math. Phys. 304. 875–878 (2011))CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Tracy, C., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Yang, C.N., Yang, C.P.: One-dimensional chain of anisotropic spin-spin interactions. I. proof of Bethe’s hypothesis for the ground state in a finite system. Phys. Rev. 150, 321–327 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations