Skip to main content

Prediction of Electrolyte and Additive Electrochemical Stabilities

  • Chapter
  • First Online:
Electrolytes for Lithium and Lithium-Ion Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 58))

Abstract

The rapid advent of computational power and re-chargeable lithium batteries was in many ways simultaneous in the early 1990s — but not coupled to each Other to a large extent at the time of the breakthroughs. However, as the new computers and computational methods were efficient, these fast became used in the field to model well-known battery materials and phenomena, often with the aim to explain experimental data. Later there were also new battery materials or demands emerging, where computations were foreseen to possibly have a predictive power. As another way of thinking the models needed to correctly look at complex battery phenomena spurred the development of computational strategies and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ue, M. Role-Assigned Electrolytes: Additives, In Lithium-Ion Batteries; Yoshio, M.; Brodd, R. J.; Kozawa, A., Eds.; Springer: New York, 2009; 75–115.

    Google Scholar 

  2. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries., Chem. Rev. 2004, 104, 4303–4417.

    Article  Google Scholar 

  3. Xu, K.; Ding, S. P.; Jow, T. R. Toward Reliable Values of Electrochemical Stability Limits for Electrolytes, J. Electrochem. Soc. 1999, 146, 4172–4178.

    Article  Google Scholar 

  4. Tarascon, J. M.; Guyomard, D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li(1+x)Mn204/carbon Li-ion cells, Solid State Ionics 1994, 69, 293–305.

    Article  Google Scholar 

  5. Guyomard, D.; Tarascon, J. M. High voltage stable liquid electrolytes for Li(1+x)Mn204/carbon rocking-chair lithium batteries, J. Power Sources 1995, 54, 92–98.

    Article  Google Scholar 

  6. Koch, V. R.; Dominey, L. A.; Nanjundiah, C.; Ondrechen, M. J. The Intrinsic Anodic Stability of Several Anions Comprising Solvent-Free Ionic Liquids, J. Electrochem. Soc. 1996, 143, 798–803.

    Article  Google Scholar 

  7. Egashira, M.; Okada, S.; Yamaki, J. The effect of cation species on the anodic oxidation of organic solvent electrolytes, Electrochemistry 2001, 69, 455–457.

    Google Scholar 

  8. Ue, M.; Murakami, A.; Nakamura, S. Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories, J. Electrochem. Soc. 2002, 149, A1572–A1577.

    Article  Google Scholar 

  9. Egashira, M.; Takahashi, H.; Okada, S.; Yamaki, J. Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode, J. Power Sources 2001, 92, 267–271.

    Article  Google Scholar 

  10. Li, T.; Balbuena, P. B. Theoretical studies of the reduction of ethylene carbonate, Chem. Phys. Lett. 2000, 317, 421–429.

    Article  Google Scholar 

  11. Wang, Y.; Nakamura, S.; Ue, M.; Balbuena, P. B., Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate, J. Am. Chem. Soc., 2001, 123, 11708–11718.

    Article  Google Scholar 

  12. Leung, K.; Budzien, J. L., Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys., 2010, 12, 6583–6586.

    Article  Google Scholar 

  13. Yu, J.; Balbuena, P. B.; Budzien, J.; Leung, K. Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate, J. Electrochem. Soc. 2011, 158, A400–A410.

    Article  Google Scholar 

  14. Endo, E.; Ata, M.; Tanaka, K.; Sekai, K. Electron Spin Resonance Study of the Electrochemical Reduction of Electrolyte Solutions for Lithium Secondary Batteries, J. Electrochem. Soc. 1998, 145, 3757–3764.

    Article  Google Scholar 

  15. Endo, E.; Tanaka, K.; Sekai, K. Initial Reaction in the Reduction Decomposition of Electrolyte Solutions for Lithium Batteries, J. Electrochem. Soc. 2000, 147, 4029–4033.

    Article  Google Scholar 

  16. Vollmer, J. M.; Curtiss, L. A.; Vissers, D. R.; Amine, K. Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates, J. Electrochem. Soc. 2004, 151, A178–A183.

    Article  Google Scholar 

  17. Tasaki, K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations., J. Phys. Chem. B 2005, 109, 2920–2933.

    Article  Google Scholar 

  18. Tasaki, K.; Kanda, K.; Kobayashi, T.; Nakamura, S.; Ue, M. Theoretical Studies on the Reductive Decompositions of Solvents and Additives for Lithium-Ion Batteries near Lithium Anodes, J. Electrochem. Soc. 2006, 153, A2192–A2197.

    Article  Google Scholar 

  19. Johansson, P. Intrinsic anion oxidation potentials., J. Phys. Chem. A 2006, 110, 12077–12080.

    Article  Google Scholar 

  20. Johansson, P. Additions and corrections to Intrinsic Anion Oxidation Potentials, J. Phys. Chem. A 2007, 111, 1378–1379.

    Article  Google Scholar 

  21. Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use., J. Phys. Chem. B 2009, 113, 16596–16602.

    Article  Google Scholar 

  22. Ue, M.; Fujii, T.; Zhou, Z.; Takeda, M.; Kinoshita, S. Electrochemical properties of Li[CnF(2n+1)BF3] as electrolyte salts for lithium-ion cells, Solid State Ionics 2006, 177, 323–331.

    Article  Google Scholar 

  23. Scheers, J.; Johansson, P.; Jacobsson, P. Anions for lithium battery electrolytes: A spectroscopic and theoretical study of the B(CN)4 - anion of the ionic liquid C(2mim)[B(CN)4], J. Electrochem. Soc. 2008, 155, A628–A634.

    Article  Google Scholar 

  24. Scheers, J.; Johansson, P.; Szczeciński, P.; Wieczorek, W.; Armand, M.; Jacobsson, P. Benzimidazole and imidazole lithium salts for battery electrolytes, J. Power Sources 2010, 195, 6081–6087.

    Article  Google Scholar 

  25. Ong, S. P.; Ceder, G. Investigation of the Effect of Functional Group Substitutions on the Gas-Phase Electron Affinities and Ionization Energies of Room-Temperature Ionic Liquids Ions using Density Functional Theory, Electrochim. Acta 2010, 55, 3804–3811.

    Article  Google Scholar 

  26. Assary, R. S.; Curtiss, L. A.; Redfern, P. C.; Zhang, Z.; Amine, K. Computational Studies of Polysiloxanes : Oxidation Potentials and Decomposition Reactions, J. Phys. Chem. 2011, 67, 12216–12223.

    Google Scholar 

  27. Scheers, J.; Jónsson, E.; Johansson, P.; Jacobsson, P. Novel Lithium Imides; Effects of -F, -CF3, and -CN Substituents on Lithium Battery Salt Stability and Dissociation, Electrochemistry 2012, 80, 18–25.

    Article  Google Scholar 

  28. Zhang, X.; Pugh, J. K.; Ross, P. N. Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory, J. Electrochem. Soc. 2001, 148, E183–E188.

    Article  Google Scholar 

  29. Vollmer, J. M.; Kandalam, A.; Zapol, P.; Curtiss, L. A.; Chen, C.-H.; Vissers, D. R.; Amine, K., Prediction of reduction potentials with quantum chemical methods, In Advanced Batteries and Supercapacitors; Nazri, G.; Koetz, R.; Scrosati, B.; Moro, P. A.; Takeuchi, E. S., Eds.; The Electrochemical Society Proceedings Series, The Electrochemical Society: Pennington, NJ, 2001; pp. 389–394.

    Google Scholar 

  30. Leung, K.; Qi, Y.; Zavadil, K. R.; Jung, Y. S.; Dillon, A. C.; Cavanagh, A. S.; Lee, S.-H.; George, S. M., Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies, J. Am. Chem. Soc., 2011, 133, 14741–14754.

    Article  Google Scholar 

  31. Leung, K. First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on LixMn2O4(100) Surfaces, J. Phys. Chem. C 2012, 116, 9852–9861.

    Article  Google Scholar 

  32. Bedrov, D.; Smith, G. D.; van Duin, A. C., T. Reactions of Singly-Reduced Ethylene Carbonate in Lithium Battery Electrolytes: A Molecular Dynamics Simulation Study Using the ReaxFF, J. Phys. Chem. A, 2012, 116, 2978–2985.

    Article  Google Scholar 

  33. Johansson, P.; Jacobsson, P. Rational design of electrolyte components by ab initio calculations, J. Power Sources 2006, 153, 336–344.

    Article  Google Scholar 

  34. Patel, P. Materials Genome Initiative and energy, MRS Bulletin 2011, 36, 964–966.

    Article  Google Scholar 

  35. Aurbach, D.; Gofer, Y.; Ben-zion, M.; Aped, P. The behaviour of lithium electrodes in propylene and ethylene carbonate : the major factors that influence Li cycling efficiency, J. Electroanal. Chem. 1992, 339, 451–471.

    Article  Google Scholar 

  36. Aurbach, D.; Levi, M. D.; Levi, E.; Schechter, A. Failure and Stabilization Mechanisms of Graphite Electrodes, J. Phys. Chem. B 1997, 101, 2195–2206.

    Article  Google Scholar 

  37. Wang, Y.; Nakamura, S.; Tasaki, K.; Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?, J. Am. Chem. Soc. 2002, 124, 4408–4421.

    Article  Google Scholar 

  38. Wang, Y.; Balbuena, P. B. Theoretical Insights into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate : Density Functional Theory Studies, J. Phys. Chem. B 2002, 106, 4486–4495.

    Article  Google Scholar 

  39. Wang, Y.; Balbuena, P. B. Theoretical studies on cosolvation of Li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates, Int. J. Quant. Chem. 2005, 102, 724–733.

    Article  Google Scholar 

  40. Han, Y.; Uck, S.; Ok, J.; Cho, J.; Kim, H. Theoretical studies of the solvent decomposition by lithium atoms in lithium-ion battery electrolyte, Chem. Phys. Lett. 2002, 360, 359–366.

    Article  Google Scholar 

  41. Han, Y.-K.; Lee, S. U. Performance of density functionals for calculation of reductive ring-opening reaction energies of Li+-EC and Li+-VC, Theor. Chem. Acc. 2004, 112, 106–112.

    Article  Google Scholar 

  42. Han, Y.; Lee, S. U. Density Functional Studies of Ring-Opening Reactions of Li+-(ethylene carbonate) and Li+-(vinylene carbonate), Bull. Korean Chem. Soc. 2005, 26, 43–46.

    Article  MathSciNet  Google Scholar 

  43. Tasaki, K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations., J. Phys. Chem. B 2005, 109, 2920–2933.

    Article  Google Scholar 

  44. Tasaki, K.; Kanda, K.; Kobayashi, T.; Nakamura, S.; Ue, M. Theoretical Studies on the Reductive Decompositions of Solvents and Additives for Lithium-Ion Batteries near Lithium Anodes, J. Electrochem. Soc. 2006, 153, A2192–A2197.

    Article  Google Scholar 

  45. Tasaki, K.; Goldberg, A.; Winter, M. On the difference in cycling behaviors of lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes, Electrochim. Acta 2011, 56, 10424–10435.

    Article  Google Scholar 

  46. Winter, M. The Solid Electrolyte Interphase – The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries, Z. Phys. Chem. 2009, 223, 1395–1406.

    Article  Google Scholar 

  47. Kim, S.-P.; Van Duin, A. C. T.; Shenoy, V. B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study, J. Power Sources 2011, 196, 8590–8597.

    Article  Google Scholar 

  48. Naji, A.; Ghanbaja, J.; Humbert, B.; Willmann, P.; Billaud, D. Electroreduction of graphite in LiCl04-ethylene carbonate electrolyte . Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy, J. Power Sources 1996, 63, 33–39.

    Article  Google Scholar 

  49. Novak, P.; Joho, F.; Imhof, R.; Panitz, J.; Haas, O. In situ investigation of the interaction between graphite and electrolyte solutions, J. Power Sources 1999, 81-82, 212–216.

    Article  Google Scholar 

  50. Yamaguchi, S.; Asahina, H.; Hirasawa, K. A.; Sato, T.; Mori, S. SEI Film Formation On Graphite Anode Surfaces In Lithium Ion Battery, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 1998, 322, 239–244.

    Article  Google Scholar 

  51. Zhang, X.; Kostecki, R.; Richardson, T. J.; Pugh, J. K.; Ross, P. N. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates, J. Electrochem. Soc. 2001, 148, A1341–A1345.

    Article  Google Scholar 

  52. Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile., J. Am. Chem. Soc. 2005, 127, 7227–7234.

    Article  Google Scholar 

  53. Tasaki, K.; Goldberg, A.; Winter, M. On the difference in cycling behaviors of lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes, Electrochim. Acta 2011, 56, 10424–10435.

    Article  Google Scholar 

  54. Han, Y.-K.; Jung, J.; Cho, J.-J.; Kim, H.-J. Determination of the oxidation potentials of organic benzene derivatives: theory and experiment, Chem. Phys. Lett. 2003, 368, 601–608.

    Article  Google Scholar 

  55. Xing, L.; Wang, C.; Li, W.; Xu, M.; Meng, X.; Zhao, S. Theoretical insight into oxidative decomposition of propylene carbonate in the lithium ion battery., J. Phys. Chem. B 2009, 113, 5181–5187.

    Article  Google Scholar 

  56. Moshkovich, M.; Cojocaru, M.; Gottlieb, H. .; Aurbach, D. The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS, J. Electroanal. Chem. 2001, 497, 84–96.

    Article  Google Scholar 

  57. Xing, L.; Borodin, O.; Smith, G. D.; Li, W., Density functional theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate, J. Phys. Chem. A, 2011, 115, 13896–13905.

    Article  Google Scholar 

  58. Ue, M.; Takeda, M.; Takehara, M.; Mori, S. Electrochemical Properties of Quaternary Ammonium Salts for Electrochemical Capacitors, J. Electrochem. Soc. 1997, 144, 2684–2688.

    Article  Google Scholar 

  59. Borodin, O.; Jow, T. R. Quantum Chemistry Studies of the Oxidative Stability of Carbonate, Sulfone and Sulfonate-Based Electrolytes Doped with BF4 -, PF6 - Anions, ECS Transactions 2011, 33, 77–84.

    Article  Google Scholar 

  60. Shao, N.; Sun, X.; Dai, S.; Jiang, D. Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries., J. Phys. Chem. B 2011, 115, 12120–12125.

    Article  Google Scholar 

  61. Shao, N.; Sun, X.-G.; Dai, S.; Jiang, D.-E. Oxidation potentials of functionalized sulfone solvents for high-voltage li-ion batteries: a computational study., J. Phys. Chem. B 2012, 116, 3235–3238.

    Article  Google Scholar 

  62. Xu, K.; Angell, C. A. High Anodic Stability of a New Electrolyte Solvent : Unsymmetric Noncyclic Aliphatic Sultone, J. Electrochem. Soc. 1998, 145, L70–L72.

    Article  Google Scholar 

  63. Sun, X.-G.; Angell, C. A., New sulfone electrolytes for rechargeable lithium batteries, Electrochem. Commun., 2005, 7, 261–266.

    Article  Google Scholar 

  64. Sun, X.; Angell, C. A. Doped sulfone electrolytes for high voltage Li-ion cell applications, Electrochem. Commun. 2009, 11, 1418–1421.

    Article  Google Scholar 

  65. Kita, F.; Kawakami, A.; Sonoda, T.; Kobayashi, H. On the new Fluorinated Organic Lithium Salts for Lithium Batteries.pdf, In Proceedings of New Sealed Rechargeable Batteries and Supercapacitors; Barnett, B. M.; Dowgiallo, E.; Halpert, G.; Matsuda, Y.; Takehara, Z.-I., Eds.; The Electrochemical Society Proceedings Series, The Electrochemical Society: Pennington, NJ, 1993; 321–332.

    Google Scholar 

  66. Horowitz, H. H.; Haberman, J. I.; Klemann, L. P.; Newman, G. H.; Stogryn, E. L.; Whitney, T. A. The anodic oxidation stability of lithium electrolytes, In Proceedings of the Symposium on Lithium Batteries; Venkatasetty, H. V., Ed.; The Electrochemical Society Proceedings Series, The Electrochemical Society: Pennington, NJ, 1981; 131–143.

    Google Scholar 

  67. Kita, F.; Kawakami, A.; Nie, J.; Sonoda, T.; Kobayashi, H., On the characteristics of electrolytes with new lithium imide salts, J. Power Sources 1997, 68, 307–310.

    Article  Google Scholar 

  68. Kita, F.; Sakata, H.; Sinomoto, S.; Kawakami, A.; Kamizori, H.; Sonoda, T.; Nagashima, H.; Nie, J.; Pavlenko, N.V.; Yagupolskii, Y. L. Characteristics of the electrolyte with fluoro organic lithium salts, J. Power Sources 2000, 90, 27–32.

    Article  Google Scholar 

  69. Kita, F.; Sakata, H.; Kawakami, A.; Kamizori, H.; Sonoda, T.; Nagashima, H.; Pavlenko, N.V.; Yagupolskii, Y. L. Electronic structures and electrochemical properties of LiPF(6−n)(CF3)n, J. Power Sources 2001, 97-98, 581–583.

    Article  Google Scholar 

  70. Benrabah, D.; Arnaud, R.; Sanchez, J.-Y. Comparative ab initio calculations on several salts, Electrochim. Acta 1995, 40, 2437–2443.

    Article  Google Scholar 

  71. Barthel, J.; Buestrich, R.; Carl, E.; Gores, H. J. A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes, J. Electrochem. Soc. 1996, 143, 3572–3575.

    Article  Google Scholar 

  72. Ignatev, N.; Welzbiermann, U.; Kucheryna, A.; Bissky, G.; Willner, H. New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions, J. Fluorine Chem. 2005, 126, 1150–1159.

    Article  Google Scholar 

  73. Zhan, C.; Nichols, J. A.; Dixon, D. A., Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies, J. Phys. Chem. A, 2003, 107, 4184–4195.

    Article  Google Scholar 

  74. Xue, Z.-M.; Chen, C.-H. Density functional theory study on lithium bis[1,2-benzenediolato(2-)-O,O′] borate and its derivatives: electronic structures, energies, and molecular properties, Electrochim. Acta 2004, 49, 5167–5175.

    Article  Google Scholar 

  75. Xue, Z.; Ding, Y.; Chen, C. A DFT study of electronic structures, energies, and molecular properties of lithium bis[croconato]borate and its derivatives, Electrochim. Acta 2007, 53, 990–997.

    Article  Google Scholar 

  76. Xue, Z.-M.; Zhou, W.; Ding, J.; Chen, C.-H. Electronic structures and molecular properties of FLBDOB and its derivatives: A combined experimental and theoretical study, Electrochim. Acta 2010, 55, 5342–5348.

    Article  Google Scholar 

  77. Enomoto, T.; Matsumoto, K.; Hagiwara, R. Properties of fluorosulfate-based ionic liquids and geometries of (FO2SOH)OSO2F- and (FO2SOH)2O2SOF-, Dalton Trans. 2011, 40, 12491–12499.

    Article  Google Scholar 

  78. Armand, M.; Johansson, P. Novel weakly coordinating heterocyclic anions for use in lithium batteries, J. Power Sources 2008, 178, 821–825.

    Article  Google Scholar 

  79. Jónsson, E.; Armand, M.; Johansson, P. Novel pseudo-delocalized anions for lithium battery electrolytes., Phys. Chem. Chem. Phys. 2012, 14, 6021–6025.

    Article  Google Scholar 

  80. Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, J. Chem. Phys. 2003, 119, 12129–12137.

    Article  Google Scholar 

  81. Ong, S. P.; Andreussi, O.; Wu, Y.; Marzari, N.; Ceder, G. Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations, Chem. Mater. 2011, 23, 2979–2986.

    Article  Google Scholar 

  82. Howlett, P. C.; Izgorodina, E. I.; Forsyth, M.; MacFarlane, D. R. Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids, Z. Phys. Chem. 2006, 220, 1483–1498.

    Article  Google Scholar 

  83. Ballone, P.; Cortes-Huerto, R. Ab initio simulations of thermal decomposition and of electron transfer reactions in room temperature ionic liquids, Faraday Discuss. 2012, 154, 373–389.

    Article  Google Scholar 

  84. Adachi, M.; Tanaka, K.; Sekai, K. Aromatic Compounds as Redox Shuttle Additives for 4 V Class Secondary Lithium Batteries, J. Electrochem. Soc. 1999, 146, 1256–1261.

    Article  Google Scholar 

  85. Chen, Z.; Wang, Q.; Amine, K. Understanding the Stability of Aromatic Redox Shuttles for Overcharge Protection of Lithium-Ion Cells, J. Electrochem. Soc. 2006, 153, A2215–A2219.

    Article  Google Scholar 

  86. Wang, R. L.; Buhrmester, C.; Dahn, J. R. Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells, J. Electrochem. Soc. 2006, 153, A445–A449.

    Article  Google Scholar 

  87. Wang, R. L.; Dahn, J. R. Computational Estimates of Stability of Redox Shuttle Additives for Li-Ion Cells, J. Electrochem. Soc. 2006, 153, A1922–A1928.

    Article  Google Scholar 

  88. Zhang, Z.; Zhang, L.; Schlueter, J. A.; Redfern, P. C.; Curtiss, L.; Amine, K. Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries, J. Power Sources 2010, 195, 4957–4962.

    Article  Google Scholar 

  89. Buhrmester, C.; Chen, J.; Moshurchak, L.; Jiang, J.; Wang, R. L.; Dahn, J. R. Studies of Aromatic Redox Shuttle Additives for LiFePO4-Based Li-Ion Cells, J. Electrochem. Soc. 2005, 152, A2390–A2399.

    Article  Google Scholar 

  90. Buhrmester, C.; Moshurchak, L. M.; Wang, R. L.; Dahn, J. R. The Use of 2,2,6,6-Tetramethylpiperinyl-Oxides and Derivatives for Redox Shuttle Additives in Li-Ion Cells, J. Electrochem. Soc. 2006, 153, A1800–A1804.

    Article  Google Scholar 

  91. Han, Y.-K.; Jung, J.; Yu, S.; Lee, H. Understanding the characteristics of high-voltage additives in Li-ion batteries: Solvent effects, J. Power Sources 2009, 187, 581–585.

    Article  Google Scholar 

  92. Trasatti, S. The absolute electrode potential: An explanatory note, J. Electroanal. Chem. 1986, 209, 417–428.

    Article  Google Scholar 

  93. Borodin, O.; Behl, W.; Jow, T. R. Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes, J. Phys. Chem. C 2013, 117, 8661–8682.

    Article  Google Scholar 

  94. Leung, K. Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries, J. Phys. Chem. C 2013, 117, 1539–1547.

    Article  Google Scholar 

  95. Jónsson, E.; Wilken, S.; Kerner, M.; Johansson, P. Manuscript in preparation.

    Google Scholar 

  96. Bryantsev, V. S.; Faglioni, F., Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li-air batteries, J. Phys. Chem. A, 2012, 116, 7128–7138.

    Article  Google Scholar 

Download references

Acknowledgements

 The writing of this chapter was made possible due to funding to both J.S. and P.J. by several Swedish sources which hereby are gratefully acknowledged: the Swedish Hybrid Vehicle Centre (SHC), Chalmers Area of Advance Transport, the Swedish Energy Agency (STEM), and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS). Gothenburg, February 22nd 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Scheers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheers, J., Johansson, P. (2014). Prediction of Electrolyte and Additive Electrochemical Stabilities. In: Jow, T., Xu, K., Borodin, O., Ue, M. (eds) Electrolytes for Lithium and Lithium-Ion Batteries. Modern Aspects of Electrochemistry, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0302-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0302-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0301-6

  • Online ISBN: 978-1-4939-0302-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics