Skip to main content

On the Surface Chemistry of Cathode Materials in Li-Ion Batteries

  • Chapter
  • First Online:
Electrolytes for Lithium and Lithium-Ion Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 58))

Abstract

The main cathode materials for Li batteries include the following systems: transition metal oxides and sulfides (MO x , MS x ), lithiated transition metal oxides and sulfides (Li x MO y , Li x MS y ), and LiMPO4 olivine compounds. There are also oxygen- and sulfur-based cathodes whose main solid components are carbonaceous materials. Most of these cathodes develop very rich surface chemistry that affects very strongly their electrochemical performance. The main reactions are acid–base reactions (with acidic solution species, HF, PF5, PF3O, etc.); nucleophilic reactions between the basic compounds and the electrophilic alkyl carbonate solvents; polymerization; possible oxidation of solution species; and dissolution of transition metal ions. The behavior of many cathodes in Li-ion batteries is controlled by surface-film formation, passivation phenomena, and Li-ion migration through solid electrolyte interphases formed on the active mass by spontaneous reactions. We describe herein major surface processes, techniques that can address and analyze them, as well as means to improve the performance of cathodes in Li-ion batteries by controlling their surface phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. H. Seng, J. Liu, Z. P. Guo, Z. X. Chen, D. Jia, H. K. Liu, Free-standing V2O5 electrode for flexible lithium ion batteries, Electrochem. Commun. 2011, 13, 383-386.

    Google Scholar 

  2. S. Surampudi, D. H. Shen, C. K. Huang, F. Deligiannis, A. Attia, G. Halpert, Advances in LiTiS2 cell technology, J. Power Sources 1991, 36, 395-402.

    Google Scholar 

  3. M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev. (Washington, DC, U. S.) 2004, 104, 4271-4301.

    Google Scholar 

  4. A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, Y. Nishi, Olivine-type cathodes: Achievements and problems, J. Power Sources 2003, 119–121, 232-238.

    Google Scholar 

  5. F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci, Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries, J. Electrochem. Soc. 2003, 150, A1318-A1327.

    Google Scholar 

  6. E. Peled, In: J.P. Gabano (ed) Lithium Batteries, Academic Press, London 1983, 43.

    Google Scholar 

  7. Y. V. Mikhaylik, J. R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, J. Electrochem. Soc. 2004, 151, A1969-A1976.

    Google Scholar 

  8. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, Lithium−Air Battery: Promise and Challenges, The Journal of Physical Chemistry Letters 2010, 1, 2193-2203.

    Google Scholar 

  9. G. H. Boyle, F. Goebel, Development and Characterization of a High-Capacity Lithium Thionyl Chloride Battery, J. Power Sources 1995, 54, 186-191.

    Google Scholar 

  10. R. Elazari, G. Salitra, Y. Talyosef, J. Grinblat, C. Scordilis-Kelley, A. Xiao, J. Affinito, D. Aurbach, Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy, J. Electrochem. Soc. 2010, 157, A1131-A1138.

    Google Scholar 

  11. C. W. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode, J. Am. Chem. Soc. 2011, 133, 2132-2135.

    Google Scholar 

  12. J. T. Son, E. J. Cairns, Preparation and Characterization of Li1.05 [Ni0.35Co0.25Mn0.4] O2 as a Cathode Material for Rechargeable Lithium Cells, Electrochem. Solid-State Lett. 2006, 9, A27-A30.

    Google Scholar 

  13. S. K. Martha, B. Markovsky, J. Grinblat, Y. Gofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi, I. Exnar, LiMnPO4 as an Advanced Cathode Material for Rechargeable Lithium Batteries, J. Electrochem. Soc. 2009, 156, A541-A552.

    Google Scholar 

  14. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, D. Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem. 2011, 21, 9938-9954.

    Google Scholar 

  15. D. Aurbach, M. Daroux, P. Faguy, E. Yeager, The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 297, 225-244.

    Google Scholar 

  16. D. Aurbach, H. Gottlieb, The electrochemical behavior of selected polar aprotic systems, Electrochim. Acta 1989, 34, 141-156.

    Google Scholar 

  17. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy & Environmental Science 2011, 4, 3243-3262.

    Google Scholar 

  18. J. M. Tarascon, D. Guyomard, New Electrolyte Compositions Stable Over The O-V To 5-V Voltage Range and Compatible With The Li1+XMn2O4 Carbon Li-Ion Cells, Solid State Ionics 1994, 69, 293-305.

    Google Scholar 

  19. M. Moshkovich, M. Cojocaru, H. E. Gottlieb, D. Aurbach, The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS J. Electroanal. Chem. 2001, 497, 84-96.

    Google Scholar 

  20. B. Markovsky, F. Amalraj, H. E. Gottlieb, Y. Gofer, S. K. Martha, D. Aurbach, On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts, J. Electrochem. Soc. 2010, 157, A423-A429.

    Google Scholar 

  21. R. Marom, O. Haik, D. Aurbach, I. C. Halalay, Revisiting LiClO4 as an Electrolyte for Rechargeable Lithium-Ion Batteries, J. Electrochem. Soc. 2010, 157, A972-A983.

    Google Scholar 

  22. M. L. Marcinek, J. W. Wilcox, M. M. Doeff, R. M. Kostecki, Microwave Plasma Chemical Vapor Deposition of Carbon Coatings on LiNi1/3Co1/3Mn1/3O2 for Li-Ion Battery Composite Cathodes, J. Electrochem. Soc. 2009, 156, A48-A51.

    Google Scholar 

  23. P. R. Griffiths, J. A. D. Haseth, Fourier Transform Infrared Spectrometry, Wiley-Interscience, New York, 2nd ed, 2007.

    Google Scholar 

  24. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, J Power Sources 2007, 165, 491.

    Google Scholar 

  25. C. M. Julien, M. Massot, Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel, Materials Science and Engineering: B 2003, 97, 217-230.

    Google Scholar 

  26. R. Baddour-Hadjean, J.-P. Pereira-Ramos, Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries, Chem. Rev. (Washington, DC, U. S.) 2009, 110, 1278-1319.

    Google Scholar 

  27. S. Leroy, H. Martinez, R. Dedryvere, D. Lemordant, D. Gonbeau, Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study, Appl. Surf. Sci. 2007, 253, 4895-4905.

    Google Scholar 

  28. L. Castro, R. Dedryvère, J.-B. Ledeuil, J. Bréger, C. Tessier, D. Gonbeau, Aging Mechanisms of LiFePO4 // Graphite Cells Studied by XPS: Redox Reaction and Electrode/Electrolyte Interfaces, J. Electrochem. Soc. 2012, 159, A357-A363.

    Google Scholar 

  29. X. Hou, B. T. Jones, Inductively Coupled Plasma/Optical Emission Spectrometry, In Encyclopedia of Analytical Chemistry, R.A. Meyers Ed. 2000, John Wiley & Sons Ltd, Chichester, 9468–9485.

    Google Scholar 

  30. F. Amalraj, D. Kovacheva, M. Talianker, L. Zeiri, J. Grinblat, N. Leifer, G. Goobes, B. Markovsky, D. Aurbach, Synthesis of Integrated Cathode Materials xLi2MnO3⋅ (1 − x) LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and Studies of Their Electrochemical Behavior, J. Electrochem. Soc. 2010, 157, A1121-A1130.

    Google Scholar 

  31. M. Jiang, B. Key, Y. S. Meng, C. P. Grey, Electrochemical and Structural Study of the Layered, “Li-Excess” Lithium-Ion Battery Electrode Material Li[Li1/9Ni1/3Mn5/9]O2, Chem. Mater. 2009, 21, 2733-2745.

    Google Scholar 

  32. M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, New York, 2008.

    Google Scholar 

  33. D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, L. Heider, Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides, J. Electrochem. Soc. 1998, 145, 3024-3034.

    Google Scholar 

  34. M. Gaberscek, R. Dominko, J. Jamnik, The meaning of impedance measurements of LiFePO4 cathodes: A linearity study, J. Power Sources 2007, 174, 944-948.

    Google Scholar 

  35. H. Sclar, D. Kovacheva, E. Zhecheva, R. Stoyanova, R. Lavi, G. Kimmel, J. Grinblat, O. Girshevitz, F. Amalraj, O. Haik, E. Zinigrad, B. Markovsky, D. Aurbach, On the Performance of LiNi1/3Mn1/3Co1/3O2 Nanoparticles as a Cathode Material for Lithium-Ion Batteries, J. Electrochem. Soc. 2009, 156, A938-A948.

    Google Scholar 

  36. O. Haik, S. K. Martha, H. Sclar, Z. Samuk-Fromovich, E. Zinigrad, B. Markovsky, D. Kovacheva, N. Saliyski, D. Aurbach, Characterizations of self-combustion reactions (SCR) for the production of nanomaterials used as advanced cathodes in Li-ion batteries, Thermochim. Acta 2009, 493, 96-104.

    Google Scholar 

  37. S. K. Martha, H. Sclar, Z. Szmuk Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds, J. Power Sources 2009, 189, 248-255.

    Google Scholar 

  38. O. Haik, N. Leifer, H. Sclar, Z. Samuk-Fromovich, E. Zinigrad, B. Markovsky, L. Larush, Y. Goffer, G. Goobes, D. Aurbach, On the Surface Chemistry of LiMO2 Cathode Materials (M=[MnNi] and [MnNiCo]): Electrochemical, Spectroscopic, and Calorimetric Studies, J. Electrochem. Soc. 2010, 157, A1099-A1107.

    Google Scholar 

  39. B. Markovsky, D. Kovacheva, Y. Talyosef, M. Gorova, J. Grinblat, D. Aurbach, Studies of Nanosized LiNi0.5Mn0.5O2-Layered Compounds Produced by Self-Combustion Reaction as Cathodes for Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2006, 9, A449-A453.

    Google Scholar 

  40. E. Markevich, G. Salitra, D. Aurbach, Influence of the PVdF binder on the stability of LiCoO2 electrodes, Electrochem. Commun. 2005, 7, 1298-1304.

    Google Scholar 

  41. W. Choi, A. Manthiram, Comparison of metal ion dissolutions from lithium ion battery cathodes, J. Electrochem. Soc. 2006, 153, A1760-A1764.

    Google Scholar 

  42. B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H.-J. Kim, The Impact of Co2+ Ions in Solutions on the Performance of LiCoO2, Li, and Lithiated Graphite Electrodes, J. Electrochem. Soc. 2004, 151, A1068-A1076.

    Google Scholar 

  43. J. Lei, L. Li, R. Kostecki, R. Muller, F. McLarnon, Characterization of SEI Layers on LiMn2O4 Cathodes with In Situ Spectroscopic Ellipsometry, J. Electrochem. Soc. 2005, 152, A774-A777.

    Google Scholar 

  44. B. M. Meyer, N. Leifer, S. Sakamoto, S. G. Greenbaum, C. P. Grey, High Field Multinuclear NMR Investigation of the SEI Layer in Lithium Rechargeable Batteries, Electrochem. Solid-State Lett. 2005, 8, A145-A148.

    Google Scholar 

  45. S. Menkin, D. Golodnitsky, E. Peled, Artificial solid-electrolyte interphase (SEI) for improved cyclability and safety of lithium–ion cells for EV applications, Electrochem. Commun. 2009, 11, 1789-1791.

    Google Scholar 

  46. N. Liu, H. Li, Z. Wang, X. Huang, L. Chen, Origin of Solid Electrolyte Interphase on Nanosized LiCoO2, Electrochem. Solid-State Lett. 2006, 9, A328-A331.

    Google Scholar 

  47. D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, J. Power Sources 1999, 81–82, 95-111.

    Google Scholar 

  48. D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries, J. Power Sources 2007, 165, 491-499.

    Google Scholar 

  49. S. S. Zhang, K. Xu, T. R. Jow, Understanding Formation of Solid Electrolyte Interface Film on LiMn2O4 Electrode, J. Electrochem. Soc. 2002, 149, A1521-A1526.

    Google Scholar 

  50. D. Aurbach, B. Markovsky, Y. Talyossef, G. Salitra, H.-J. Kim, S. Choi, Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells, J. Power Sources 2006, 162, 780-789.

    Google Scholar 

  51. L. Yang, B. Ravdel, B. L. Lucht, Electrolyte Reactions with the Surface of High Voltage LiNi0.5Mn1.5O4 Cathodes for Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2010, 13, A95-A97.

    Google Scholar 

  52. H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode, J. Electrochem. Soc. 2004, 151, A1659-A1669.

    Google Scholar 

  53. L. Yang, T. Markmaitree, B. L. Lucht, Inorganic additives for passivation of high voltage cathode materials, J. Power Sources 2011, 196, 2251-2254.

    Google Scholar 

  54. H. Duncan, D. Duguay, Y. Abu-Lebdeh, I. J. Davidson, Study of the LiMn1.5Ni0.5O4/Electrolyte Interface at Room Temperature and 60 °C, J. Electrochem. Soc. 2011, 158, A537-A545.

    Google Scholar 

  55. F. T. Quinlan, K. Sano, T. Willey, R. Vidu, K. Tasaki, P. Stroeve, Surface Characterization of the Spinel LixMn2O4 Cathode before and after Storage at Elevated Temperatures, Chem. Mater. 2001, 13, 4207-4212.

    Google Scholar 

  56. J. Mun, T. Yim, K. Park, J. H. Ryu, Y. G. Kim, S. M. Oh, Surface Film Formation on LiNi0.5Mn1.5O4 Electrode in an Ionic Liquid Solvent at Elevated Temperature, J. Electrochem. Soc. 2011, 158, A453-A457.

    Google Scholar 

  57. F. Simmen, A. Hintennach, M. Horisberger, T. Lippert, P. Novák, C. W. Schneider, A. Wokaun, Aspects of the Surface Layer Formation on Li1 + xMn2O4 − δ during Electrochemical Cycling, J. Electrochem. Soc. 2010, 157, A1026-A1029.

    Google Scholar 

  58. A. Würsig, H. Buqa, M. Holzapfel, F. Krumeich, P. Novák, Film Formation at Positive Electrodes in Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2005, 8, A34-A37.

    Google Scholar 

  59. M. Matsui, K. Dokko, K. Kanamura, Surface Layer Formation and Stripping Process on LiMn2O4 and LiNi1∕2Mn3∕2O4 Thin Film Electrodes, J. Electrochem. Soc. 2010, 157, A121-A129.

    Google Scholar 

  60. M. Balasubramanian, H. S. Lee, X. Sun, X. Q. Yang, A. R. Moodenbaugh, J. McBreen, D. A. Fischer, Z. Fu, Formation of SEI on Cycled Lithium-Ion Battery Cathodes: Soft X-Ray Absorption Study, Electrochem. Solid-State Lett. 2002, 5, A22-A25.

    Google Scholar 

  61. S. E. Sloop, J. K. Pugh, S. Wang, J. B. Kerr, K. Kinoshita, Chemical Reactivity of PF 5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions, Electrochem. Solid-State Lett. 2001, 4, A42-A44.

    Google Scholar 

  62. N. Dupre, J. F. Martin, D. Guyomard, A. Yamada, R. Kanno, Detection of surface layers using (7)Li MAS NMR, J. Mater. Chem. 2008, 18, 4266-4273.

    Google Scholar 

  63. N. Dupré, J.-F. Martin, J. Oliveri, P. Soudan, A. Yamada, R. Kanno, D. Guyomard, Relationship between surface chemistry and electrochemical behavior of LiNi1/2Mn1/2O2 positive electrode in a lithium-ion battery, J. Power Sources 2011, 196, 4791-4800.

    Google Scholar 

  64. D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1−y)O2 electrode/non-aqueous electrolyte interface, J. Power Sources 2001, 94, 183-188.

    Google Scholar 

  65. B. Xu, C. R. Fell, M. F. Chi, Y. S. Meng, Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study, Energy & Environmental Science 2011, 4, 2223-2233.

    Google Scholar 

  66. N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba, Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2, J. Am. Chem. Soc. 2011, 133, 4404-4419.

    Google Scholar 

  67. R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, In Situ FTIR Spectroscopy Study of Li/LiNi0.8Co0.15Al0.05O2 Cells with Ionic Liquid-Based Electrolytes in Overcharge Condition, Electrochem. Solid-State Lett. 2010, 13, A32-A35.

    Google Scholar 

  68. K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev. (Washington, DC, U. S.) 2004, 104, 4303-4418.

    Google Scholar 

  69. M. Contestabile, M. Morselli, R. Paraventi, R. J. Neat, A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells, J. Power Sources 2003, 119–121, 943-947.

    Google Scholar 

  70. D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H. J. Kim, M. Schmidt, On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives, Electrochim. Acta 2002, 47, 4291-4306.

    Google Scholar 

  71. A. von Cresce, K. Xu, Electrolyte Additive in Support of 5 V Li Ion Chemistry, J. Electrochem. Soc. 2011, 158, A337-A342.

    Google Scholar 

  72. S. Komaba, N. Kumagai, Y. Kataoka, Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries, Electrochim. Acta 2002, 47, 1229-1239.

    Google Scholar 

  73. M. C. Rao, O. M. Hussain, Synthesis and electrochemical properties of Ti doped LiCoO2 thin film cathodes, J. Alloys Compd. 2010, 491, 503-506.

    Google Scholar 

  74. T.-F. Yi, Y.-R. Zhu, X.-D. Zhu, J. Shu, C.-B. Yue, A.-N. Zhou, A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery, Ionics 2009, 15, 779-784.

    Google Scholar 

  75. H. Sclar, O. Haik, T. Menachem, J. Grinblat, N. Leifer, A. Meitav, S. Luski, D. Aurbach, The Effect of ZnO and MgO Coatings by a Sono-Chemical Method, on the Stability of LiMn1.5Ni0.5O4 as a Cathode Material for 5 V Li-Ion Batteries, J. Electrochem. Soc. 2012, 159, A228-A237.

    Google Scholar 

  76. J. S. Gnanaraj, V. G. Pol, A. Gedanken, D. Aurbach, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method, Electrochem. Commun. 2003, 5, 940-945.

    Google Scholar 

  77. L. A. Riley, S. Van Atta, A. S. Cavanagh, Y. Yan, S. M. George, P. Liu, A. C. Dillon, S.-H. Lee, Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material, J. Power Sources 2011, 196, 3317-3324.

    Google Scholar 

  78. W. Chang, J.-W. Choi, J.-C. Im, J. K. Lee, Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries, J. Power Sources 2010, 195, 320-326.

    Google Scholar 

  79. Y. Iriyama, H. Kurita, I. Yamada, T. Abe, Z. Ogumi, Effects of surface modification by MgO on interfacial reactions of lithium cobalt oxide thin film electrode, J. Power Sources 2004, 137, 111-116.

    Google Scholar 

  80. Z. Chen, Y. Qin, K. Amine, Y. K. Sun, Role of surface coating on cathode materials for lithium-ion batteries, J. Mater. Chem. 2010, 20, 7606-7612.

    Google Scholar 

  81. J. Cho, T.-G. Kim, C. Kim, J.-G. Lee, Y.-W. Kim, B. Park, Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell, J. Power Sources 2005, 146, 58-64.

    Google Scholar 

  82. G.-M. Song, Y. Wu, G. Liu, Q. Xu, Influence of AlF3 coating on the electrochemical properties of LiFePO4/graphite Li-ion batteries, J. Alloys Compd. 2009, 487, 214-217.

    Google Scholar 

  83. K. S. Tan, M. V. Reddy, G. V. S. Rao, B. V. R. Chowdari, Effect of AlPO4-coating on cathodic behaviour of Li(Ni0.8Co0.2)O2, J. Power Sources 2005, 141, 129-142.

    Google Scholar 

  84. Y. Fan, J. Wang, Z. Tang, W. He, J. Zhang, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries, Electrochim. Acta 2007, 52, 3870-3875.

    Google Scholar 

  85. D. Liu, X. Liu, Z. He, Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4, J. Alloys Compd. 2007, 436, 387-391.

    Google Scholar 

  86. R. Alcantara, M. Jaraba, P. Lavela, J. L. Tirado, X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes, J. Electroanal. Chem. 2004, 566, 187-192.

    Google Scholar 

  87. Y. Wu, A. Manthiram, Effect of surface modifications on the layered solid solution cathodes (1 − z) Li[Li1/3Mn2/3]O2 − (z) Li[Mn0.5–yNi0.5–yCo2y]O2, Solid State Ionics 2009, 180, 50-56.

    Google Scholar 

  88. H.-B. Kang, S.-T. Myung, K. Amine, S.-M. Lee, Y.-K. Sun, Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries, J. Power Sources 2010, 195, 2023-2028.

    Google Scholar 

  89. B. C. Park, H. B. Kim, S. T. Myung, K. Amine, I. Belharouak, S. M. Lee, Y. K. Sun, Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region, J. Power Sources 2008, 178, 826-831.

    Google Scholar 

  90. Q. Y. Wang, J. Liu, A. V. Murugan, A. Manthiram, High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability, J. Mater. Chem. 2009, 19, 4965-4972.

    Google Scholar 

  91. C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Ram, R. Holze, H. Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 2006, 51, 3872-3883.

    Google Scholar 

  92. Y. Zhou, C. D. Gu, J. P. Zhou, L. J. Cheng, W. L. Liu, Y. Q. Qiao, X. L. Wang, J. P. Tu, Effect of carbon coating on low temperature electrochemical performance of LiFePO4/C by using polystyrene sphere as carbon source, Electrochim. Acta 2011, 56, 5054-5059.

    Google Scholar 

  93. F. Wang, J. Yang, P. F. Gao, Y. N. NuLi, J. L. Wang, Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance, J. Power Sources 2011, 196, 10258-10262.

    Google Scholar 

  94. Q.-B. Liu, S.-J. Liao, H.-Y. Song, Z.-X. Liang, High-performance LiFePO4/C materials: Effect of carbon source on microstructure and performance, J. Power Sources 2012, 211, 52-58.

    Google Scholar 

  95. H. L. Wang, Y. Yang, Y. Y. Liang, L. F. Cui, H. S. Casalongue, Y. G. Li, G. S. Hong, Y. Cui, H. J. Dai, LiMn1-xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh-Rate-Performance Lithium Ion Batteries, Angew. Chem., Int. Ed. 2011, 50, 7364-7368.

    Google Scholar 

  96. N. Iltchev, Y. Chen, S. Okada, J.-i. Yamaki, LiFePO4 storage at room and elevated temperatures, J. Power Sources 2003, 119–121, 749-754.

    Google Scholar 

  97. K. Amine, J. Liu, I. Belharouak, High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells, Electrochem. Commun. 2005, 7, 669-673.

    Google Scholar 

  98. M. Koltypin, D. Aurbach, L. Nazar, B. Ellis, On the Stability of LiFePO4 Olivine Cathodes under Various Conditions (Electrolyte Solutions, Temperatures), Electrochem. Solid-State Lett. 2007, 10, A40-A44.

    Google Scholar 

  99. S. K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J. H. Miners, I. Exnar, A. Kay, B. Markovsky, D. Aurbach, LiMn0.8Fe0.2PO4: An Advanced Cathode Material for Rechargeable Lithium Batteries, Angew. Chem., Int. Ed. 2009, 48, 8559-8563.

    Google Scholar 

  100. C. M. Julien, A. Mauger, K. Zaghib, Surface effects on electrochemical properties of nano-sized LiFePO4, J. Mater. Chem. 2011, 21, 9955-9968.

    Google Scholar 

  101. K. Zaghib, M. Dontigny, P. Charest, J. F. Labrecque, A. Guerfi, M. Kopec, A. Mauger, F. Gendron, C. M. Julien, Aging of LiFePO4 upon exposure to H2O, J. Power Sources 2008, 185, 698-710.

    Google Scholar 

  102. K. Edström, T. Gustafsson, J. O. Thomas, The cathode–electrolyte interface in the Li-ion battery, Electrochim. Acta 2004, 50, 397-403.

    Google Scholar 

  103. N. N. Bramnik, K. Nikolowski, D. M. Trots, H. Ehrenberg, Thermal Stability of LiCoPO4 Cathodes, Electrochem. Solid-State Lett. 2008, 11, A89-A93.

    Google Scholar 

  104. R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, C. Stinner, Significantly improved cycling performance of LiCoPO4 cathodes, Electrochem. Commun. 2011, 13, 800-802.

    Google Scholar 

  105. E. Markevich, R. Sharabi, H. Gottlieb, V. Borgel, K. Fridman, G. Salitra, D. Aurbach, G. Semrau, M. A. Schmidt, N. Schall, C. Bruenig, Reasons for capacity fading of LiCoPO4 cathodes in LiPF6 containing electrolyte solutions, Electrochem. Commun. 2012, 15, 22-25.

    Google Scholar 

  106. J. Wu, H. W. Park, A. P. Yu, D. Higgins, Z. W. Chen, Facile Synthesis and Evaluation of Nanofibrous Iron-Carbon Based Non-Precious Oxygen Reduction Reaction Catalysts for Li-O2 Battery Applications, J. Phys. Chem. C 2012, 116, 9427-9432.

    Google Scholar 

  107. J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J.-G. Zhang, Hierarchically Porous Graphene as a Lithium–Air Battery Electrode, Nano Lett. 2011, 11, 5071-5078.

    Google Scholar 

  108. R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries, Energy & Environmental Science 2011, 4, 2952-2958.

    Google Scholar 

  109. S. A. Freunberger, Y. H. Chen, N. E. Drewett, L. J. Hardwick, F. Barde, P. G. Bruce, The Lithium-Oxygen Battery with Ether-Based Electrolytes, Angew. Chem., Int. Ed. 2011, 50, 8609-8613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Aurbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Amalraj, S.F., Sharabi, R., Sclar, H., Aurbach, D. (2014). On the Surface Chemistry of Cathode Materials in Li-Ion Batteries. In: Jow, T., Xu, K., Borodin, O., Ue, M. (eds) Electrolytes for Lithium and Lithium-Ion Batteries. Modern Aspects of Electrochemistry, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0302-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0302-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0301-6

  • Online ISBN: 978-1-4939-0302-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics