Skip to main content

Interphases Between Electrolytes and Anodes in Li-Ion Battery

  • Chapter
  • First Online:
Book cover Electrolytes for Lithium and Lithium-Ion Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 58))

Abstract

The successful application of lithium-ion batteries depends to a great extent on the existence of interphases at anodes. In this chapter, the role and the significance of interphases in lithium-ion batteries are introduced firstly, then the theories proposed before 2005 are outlined, and the latest research progresses are reviewed at last, mainly focused on the formation processes, chemistries, and properties of the interphases on graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modern electrochemistry; vol. 2; Bockris, J.O’M.; Reddy, A. K. N., Plenum press: New York, NY, 1970.

    Google Scholar 

  2. Whittingham, M. S.; Savinell, R. F.; Zawodzinski T., Introduction: batteries and full cells, Chem. Rev., 2004, 104, 4243-4244.

    Google Scholar 

  3. Xu, K.; Cresce, A. v., Interfacing electrolytes with electrodes in Li ion batteries, J. Mater. Chem., 2011, 21, 9849-9864.

    Google Scholar 

  4. Manthiram, A., Materials challenges and opportunities of lithium ion batteries, J. Phys. Chem. Lett., 2011, 2, 176-184.

    Google Scholar 

  5. Dahn, J. R., Phase diagram of LixC6, Phys. Rev. B: Condens. Matter and Mater. Phys., 1991, 44, 9170-9177.

    Google Scholar 

  6. Peled, E.; Straze, H., The kinetics of the magnesium electrode in thionyl chloride solution, J. Electrochem. Soc., 1977, 124, 1030-1035.

    Google Scholar 

  7. Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-The solid electrolyte interphase model, J. Electrochem. Soc., 1979, 126, 2047-2051.

    Google Scholar 

  8. Aurbach, D.; Weissman, I.; Schechter, A.; Cohen, H. X-ray photoelectron spectroscopy studies of lithium surface prepared in several important electrolyte solutions. A comparison with previous studies by fourier transform infrared spectroscopy, Langmuir 1996, 12, 3991-4007.

    Google Scholar 

  9. Schechter, A.; Aurbach, D.; Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions, Langmuir 1999, 15, 3334-3342.

    Google Scholar 

  10. Larush, L.; Zinigrad, E.; Goffer, Y.; Aurbach, D. Following the growth of surface films on lithium and their thermal behaviors in standard LiPF6 solutions using differential scanning calorimetry, Langmuir 2007, 23, 12910-12914.

    Google Scholar 

  11. Wang, Y.; Nakamura, S.; Ue, M.; Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate, J. Am. Chem. Soc., 2001, 123, 11708-11718.

    Google Scholar 

  12. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, 104, 4304-4417.

    Google Scholar 

  13. Xu, K., Whether EC and PC differ in interphasial chemistry on graphitic anode and how, J. Electrochem. Soc., 2009, 156, A751-755.

    Google Scholar 

  14. Hérold, A., Recherches sur les composés d’insertion du graphite, Bull. Soc. Chim. Fr. 1955, 187, 999-1012.

    Google Scholar 

  15. Maluangnont, T.; Sirisaksoontorn, W.; Lerner, M. M. A comparative structure study of ternary graphite intercalation compounds containing alkali metals and linear or branched amines, Carbon, 2012, 50, 597-602.

    Google Scholar 

  16. Maluangnont, T.; Gotoh, K.; Fujiwara, K.; Lerner, M. M. Cation-directed orientation of amines in ternary graphite intercalation compounds, Carbon, 2011, 49, 1033-1051.

    Google Scholar 

  17. Peled, E.; Golodnitsky, D.; Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, J. Electrochem Soc. 1997, 144, L208-L210.

    Google Scholar 

  18. Fong, R.; Sacken, U. v.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 1990, 137, 2009-2013.

    Google Scholar 

  19. Chu, A. C.; Josefowicz, J. Y.; Farrington, G. C. Electrochemistry of highly ordered pyrolytic graphite surface film formation observed by atomic force microscopy. J. Electrochem. Soc., 1997, 144, 4164-4169.

    Google Scholar 

  20. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes, J. Power Sources, 1995, 54, 228-231.

    Google Scholar 

  21. Wagner, M. R.; Albering, J. H.; Moeller, K.-C.; Besenhard, J. O.; Winter, M. XRD evidence for the electrochemical formation of Li+(PC)yCn - in PC-based electrolytes, Electrochem. Commun., 2005, 7, 947-952.

    Google Scholar 

  22. Aurbach, D.; Markovsky, B.; Weissamn, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochim. Acta 1999, 45, 67-86.

    Google Scholar 

  23. Aurbach, D.; Levi, M. D.; Levi, E.; Schechter, A. Failure and stabilization mechanism of graphite electrodes, J. Phys. Chem. B 1997, 101, 2195-2206.

    Google Scholar 

  24. Aurbach, D.; Teller, H.; Levi, E. Morphology/behavior relationship in reversible electrochemical lithium insertion into graphite materials, J. Electrochem. Soc., 2002, 149, A1255-A1266.

    Google Scholar 

  25. Dey, A. N. Lithium anode film and organic and inorganic electrolyte batteries, Thin Solid Films 1977, 43, 131-171.

    Google Scholar 

  26. Dousek, F. P.; Jansta, J.; Riha, J. Electrochemical system for galvanic cells in organic aprotic solvents. IV. Decomposition of propylene carbonate on lithium, J. Electroanal. Chem., 1973, 46, 281-287.

    Google Scholar 

  27. Nazri, G.; Muller, R. H. In situ X-ray diffraction of surface layers on lithium in nonaqueous electrolyte, J. Electrochem. Soc., 1985, 132, 1385-1387.

    Google Scholar 

  28. Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E., Identification of surface films formed on lithium in propylene carbonate solution, J. Electrochem. Soc., 1987, 134, 1611-1620.

    Google Scholar 

  29. Aurbach, D.; Zaban, A.; Schechter, A.; Ein-Eli, Y.; Zinigrad, E.; Markovsky, B. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li Batteries, I. Li metal anodes, J. Electrochem. Soc., 1995, 142, 2873-2882.

    Google Scholar 

  30. Aurbach, D.; Gofer, Y.; Ben-Zion, M.; Aped, P. The behavior of lithium electrodes in propylene and ethylene carbonate: The major factors that influence Li cycling efficiency, J. Electroanl. Chem., 1992, 339, 451-471.

    Google Scholar 

  31. Aurbach, D.; Ein-Ely, Y.; Zaban, A. The surface chemistry of lithium electrodes in alkyl carbonate solutions, J. Electrochem. Soc., 1994, 141, L1-L3.

    Google Scholar 

  32. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z.-i. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4, J. Electrochem. Soc., 1995, 142, 340-347.

    Google Scholar 

  33. Kanamura, K.; Shiraishi, S.; Takehara, Z.-i. Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF, J. Electrochem. Soc., 1996, 143, 2187-2197.

    Google Scholar 

  34. Malmgren, S.; Rensmo, H.; Gustafsson, T.; Gorgoi, M.; Edström, K. Non-destructive depth profiling of the solid electrolyte interphase on LiFePO4 and graphite electrodes, ECS Tran. 2010, 25, 201-210.

    Google Scholar 

  35. Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 2002, 128, 405-416.

    Google Scholar 

  36. Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources 2000, 89, 206-218.

    Google Scholar 

  37. Ein-Eli, Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells, Electrochem. Solid-State Lett., 1999, 2, 212-214.

    Google Scholar 

  38. Xu, K.; Zhuang, G. V.; Allen, J. L.; Lee, U.; Zhang, S. S.; Ross, Jr. P. N.; Jow, T. R., Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries, J. Phys. Chem. B 2006, 110, 7708-7719.

    Google Scholar 

  39. Zhuang, G.; Xu, K.; Yang, H.; Jow, T. R.; Ross, Jr. P. N. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte, J. Phys. Chem. B 2005, 109, 17567-17537.

    Google Scholar 

  40. Zhuang, G. V.; Ross, Jr. P. N. Analysis of the chemical composition of the passive film on Li-ion battery anodes using attenuated total reflection infrared spectroscopy, Electrochem. Solid-State Lett., 2003, 6, A136-A139.

    Google Scholar 

  41. Augustsson, A.; Herstedt, M.; Guo, J.-H.; Edström, K.; Zhuang, G. V.; Ross, Jr. P. N.; Rubensson, J.-E.; Nordgren, J. Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy, Phys. Chem. Chem. Phys. 2004, 6, 4185-4189.

    Google Scholar 

  42. Xu, K. “Change-transfer” process at graphite/electrolyte interface and the solvation sheath structure of Li+ in nonaqueous electrolytes, J. Electrochem. Soc., 2007, 154, A162-A167.

    Google Scholar 

  43. Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry, J. Phys. Chem. C 2007, 111, 7411-7421.

    Google Scholar 

  44. Onuki, M.; Kinoshita, S.; Sakata, Y.; Yanagidate, M.; Otake, Y.; Ue, M.; Deguchi, M. Identification of the source of evolved gas in Li-ion batteries using 13C-labling solvents, J. Electrochem. Soc., 2008, 155, A794-A797.

    Google Scholar 

  45. Fukushima, T.; Matsuda, Y.; Hashimoto, H.; Arakawa, R. Studies on salvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectroscopy, Electrochem. Solid-State Lett., 2001, 4, A127-A128.

    Google Scholar 

  46. Matsuda, Y.; Fukushima, T.; Hashimoto, H.; Arakawa, R. Solvation of lithium ions in mixed organic electrolyte solution by electrospray ionization mass spectroscopy, J. Electrochem. Soc., 2002, 149, A1045-A1048.

    Google Scholar 

  47. von Cresce A.; Borodin, O.; Xu, K. Correlating Li+ solvation sheath structure with interphasial chemistry on graphite, J. Phys. Chem. C 2012, 116, 26111-26117.

    Google Scholar 

  48. Borodin, O.; Smith, G. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6, J. Phys. Chem. B 2009, 113, 1763-1776.

    Google Scholar 

  49. von Cresce A.; Xu, K. Preferential solvation of Li+ directs formation of interphase on graphite anode, Electrochem. Solid-State Lett., 2011, 14, A154-A156.

    Google Scholar 

  50. Wang, Y.; Nakamura, S.; Tasaki, K.; Balbuena, P.B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive? J. Am. Chem. Soc., 2002, 124, 4408-4421.

    Google Scholar 

  51. Wang, Y.; Balbuena, P.B. Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: density functional theory studies, J. Chem. Phys. B. 2002, 106,4486-4495

    Google Scholar 

  52. Tasaki, K.; Kanda, K.; Kobayashi, T.; Nakamura, S.; Ue, M. Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes, J. Electrochem. Soc., 2006, 153, A2192-A2197.

    Google Scholar 

  53. Xing, L.D.; Wang, C.Y.; Xu, M.Q.; Li, W.S.; Cai, Z.P. Theoretical study on reduction mechanism of 1,3-benzodioxol-2-one for the formation of solid electrolyte interface on anode of lithium ion battery, J. Power Sources 2009, 189, 689-692.

    Google Scholar 

  54. Xing, L.D.; Li, W.S.; Xu, M.Q.; Li, T.T.; Zhou, L., The reductive mechanism of ethylene sulfite as solid electrolyte interphase film-forming additive for lithium ion battery, J. Power Sources, 2011, 196, 7044-7047.

    Google Scholar 

  55. Borodin, O.; Smith, G.D.; Fan, P., Molecular dynamics simulations of lithium alkyl carbonates, J. Phys. Chem. B 2006, 110, 22773-22779.

    Google Scholar 

  56. Iddir, H.; Curtiss, L.A. Li ion diffusion mechanisms in bulk monoclinic Li2CO3 crystals from density functional studies, J. Phys. Chem. C 2010, 114, 20903–20906.

    Google Scholar 

  57. Tasaki, K. Harris, S.J. Computational study on the solubility of lithium salts formed on lithium ion battery negative electrode in organic solvents, J. Phys. Chem. C 2010, 114, 8076–8083.

    Google Scholar 

  58. Tasaki, K.; Goldberg, A.; Lian, J.J.; Walker, M.; Timmons, A.; Harrisc, S.J. Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents, J. Electrochem. Soc., 2009, 156, A1019-A1027.

    Google Scholar 

  59. Leung, K.; Budzien, J.L. Ab initio molecular dynamics simulations of initial stages of solid-electrolyte interface formation on lithium ion battery graphitic anodes, Phys. Chem. Chem. Phys. 2010, 12, 6583-6586.

    Google Scholar 

  60. Leung, K.; Zavadil, K.R.; Jung, Y.S.; Dillon, A.C.; Cavanagh, A.S.; Lee, S.H.; George, S.M. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: first-principles modeling and experimental studies, J. Am. Chem. Soc., 2011, 133, 1471-14754.

    Google Scholar 

  61. Kim, S.P.; van Duin A.C.T.; Shenoy, V.B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study, J. Power Sources, 2011, 196, 8590-8597.

    Google Scholar 

  62. Clements, J. H. Reactive applications of cyclic alkylene carbonates, Ind. Eng. Chem. Res., 2003, 42, 663-674.

    Google Scholar 

  63. Ein-Eli, Y.; Markovsky, B.; Aurbach, D.; Carmeli, Y.; Yamin, H.; Luski, S. The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition, Electrochim. Acta 1994, 39, 2559-2569.

    Google Scholar 

  64. Momma, T.; Nara, H.; Yamagami, S.; Tatsumi, C.; Osaka, T. Effect of the atmosphere on chemical composition and electrochemical properties of solid electrolyte interface on electrodeposited Li metal, J. Power Sources 2011, 196, 6483-6487.

    Google Scholar 

  65. Gnanaraj, J.S.; Thompson, R.W.; Iaconatti, S.N.; DiCarlo, J.F.; Abraham, K.M. Formation and growth of surface films on graphitic anode materials for li-Ion batteries, Electrochem. Solid-State Lett., 2005, 8, A128–A132.

    Google Scholar 

  66. Bryngelsson, H.; Stjerndahl, M. Gustafsson, T. Edstrom, K. How dynamic is the SEI? J. Power Sources 2007, 174, 970- 975.

    Google Scholar 

  67. Xu, K.; Cresce, A. v.; Lee, U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir 2010, 26, 11538-11543.

    Google Scholar 

  68. Yamada, Y.; Iriyama, Y.; Abe, T.; Ogumi, Z. Kinetics of lithium ion transfer at the interface between graphite and liquid electrolyte: effects of solvent and surface film, Langmuir 2009, 25, 12766-12770.

    Google Scholar 

  69. Ho, J.; Cresce, A. v.; Xu, K. Metalizing graphite/electrolyte interface for faster Li + -transport, Abstract #527, 221st ECS Meeting.

    Google Scholar 

  70. Smith, A. J.; Burns, J. C.; Zhao, X.; Xiong, D.; Dahn, J. R. A high precision coulometry study of the SEI growth in Li/graphite cells, J. Electrochem. Soc., 2011, 158, A447-A452.

    Google Scholar 

  71. Lu, P.; Harris, S. J. Lithium transport within the solid electrolyte interphase, Electrochem. Commun., 2011, 13, 1035-1037.

    Google Scholar 

  72. Lee, H. H.; Wan, C. C.; Wang, Y. Y. Thermal stability of the solid electrolyte interface on carbon electrodes of lithium batteries, J. Electrochem. Soc., 2004, 151, A542-A547.

    Google Scholar 

  73. Zhao, L.; Watanabe, I.; Doi, T.; Okada, S.; Yamaki, J.-i. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries, J. Power Sources, 2006, 161, 1275-1280.

    Google Scholar 

  74. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schimidt, M.; Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. Acta 2002, 47, 1423-1439.

    Google Scholar 

  75. Contestabile, M.; Morselli, M.; Paraventi, R.; Neat, R. J. A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells, J. Power Sources 2003, 119-121, 943-947.

    Google Scholar 

  76. Chen, G.; Zhuang, G. V.; Richardson, T. J.; Liu, G.; Ross, P. N. J. Anodic polymerization of vinyl ethylene carbonate in Li-ion battery electrolyte, Electrochem. Solid-State Lett., 2005, 8, A344-A347.

    Google Scholar 

  77. Aurbach, D.; Gnanaraj, J. S.; Geissler, W.; Schmidt, M. Vinylene carbonate and Li salicylatoborate as additive in LiPF3(CF2CF3)3 solution for rechargeable Li-ion batteries, J. Electrochem. Soc., 2004, 151, A23-A30.

    Google Scholar 

  78. Sasaki, T.; Abe T.; Iriyama, Y.; Inaba, M.; Ogumi, Z. Suppression of an alkyl dicarbonate formation in Li-ion cells, J. Electrochem. Soc., 2005, 152, A2046-A2050.

    Google Scholar 

  79. Hu, Y. S.; Kong, W. H.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. Effect of morphology and current density on the electrochemical behavior of graphite electrodes in PC-based electrolyte containing VEC additive, Electrochem. Solid-State Lett., 2004, 7, A442-A446.

    Google Scholar 

  80. Xu, M. Q.; Zhou, L.; Xing, L. D.; Li, W. S.; Lucht, B. L. Experimental and theoretical investigations on 4,5-dimethyl-[1,3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries, Electrochim. Acta 2010, 55, 6743-6748.

    Google Scholar 

  81. Zhang, S. S. A review on electrolyte additives for lithium-ion batteries, J. Power Sources 2006, 162, 1379-1394.

    Google Scholar 

  82. Xu, M. Q.; Zuo, X. X.; Li, W. S.; Zhou, H. J.; Liu, J. S.; Yuan, Z. Z. Effect of butyl sultone on the Li-ion battery performance of graphite electrode, Acta Phys.-Chim. Sin. 2006, 22, 335-340.

    MATH  Google Scholar 

  83. Xu, M. Q.; Li, W. S.; Zuo, X. X.; Liu, J. S.; Xu, X. Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive, J. Power Sources 2007, 174, 705-710.

    Google Scholar 

  84. Zuo, X. X.; Xu, M. Q.; Li, W. S.; Su, D. G.; Liu, J. S. Electrochemical reduction of 1,3-propane sultone on graphite electrodes and its application in Li-ion batteries, Electrochem. Solid-State Lett., 2006, 9, A196-A199.

    Google Scholar 

  85. Xu, M. Q.; Li, W. S.; Lucht, B. L. Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries, J. Power Sources, 2009, 193, 804-809.

    Google Scholar 

  86. Li, B.; Xu, M. Q.; Li, T. T.; Li, W. S.; Hu, S. J. Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries, Electrochem. Commun., 2012, 17, 92-95.

    Google Scholar 

  87. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes, J. Electrochem. Soc., 1999, 146, 470-472.

    Google Scholar 

  88. Cho, J.; Kim, Y. J.; Kim, T.-J.; Park, B. Zero-strain intercalation cathode for rechargeable Li-ion cell, Angew. Chem. Int. Ed., 2001, 40, 3367-3369.

    Google Scholar 

  89. Cho, J.; Kim, Y.-W.; Kim, B.; Lee, J.-G.; Park, B. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles, Angew. Chem. Int. Ed., 2003, 42, 1618-1621.

    Google Scholar 

  90. Kim, S.-S.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Electrochemical performance of natural graphite by surface modification using aluminum, Electrochem. Solid-State Lett., 2001, 4, A109-A112.

    Google Scholar 

  91. Koggegoda, I. R. M.; Kadoma, Y.; Ikuta, H.; Uchimoto, Y.; Wakihara, M. Enhancement of rate capability in graphite anode by surface modification with zirconia, Electrochem. Solid-State Lett., 2002, 5, A275-A278.

    Google Scholar 

  92. Lee, S.-E.; Kim, E.; Cho, J. Improvement of electrochemical properties of natural graphite anode materials with an ovoid morphology by AlPO4 coating, Electrochem. Solid-State Lett., 2007, 10, A1- A4.

    Google Scholar 

  93. Zhang, S. S.; Xu, K.; Jow, T. R. Effect of Li2CO3-coating on the performance of natural graphite in Li-ion batteries, Electrochem. Commun., 2003, 5, 979-982.

    Google Scholar 

  94. Zhang, S. S.; Xu, K.; Jow, T. R. Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating, J. Power Sources 2004, 129, 275-279.

    Google Scholar 

  95. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwarth, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High- performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 2008, 3, 31-35.

    Google Scholar 

  96. He, Y.; Yang, B.; Yang, K.; Brown, C.; Ramasamy, R.; Wang, H.; Lundgren, C.; Zhao, Y. Designing Si-based nanowall arrays by dynamics shadowing growth to tailor the performance of Li-ion battery anodes, J. Mater. Chem., 2012, 22, 8294-8303.

    Google Scholar 

  97. Yang, H.; Huang, S.; Huang, X.; Fan, F.; Liang, W.; Liu, X. H.; Chen, L.-Q.; Huang, J. Y.; Li, J.; Zhu, T.; Zhang, S. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires, Nano Lett. 2012, 12, 1953-1958.

    Google Scholar 

  98. Murugesan, S.; Harris, J. T.; Korgel, B. A.; Stevenson, K. J. Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries, Chem. Mater., 2012, 24, 1306-1315.

    Google Scholar 

  99. Wang, C.-M.; Li, X.; Wang, Z.; Xu, W.; Liu, J.; Gao, F.; Kovarik, L; Zhang, J.-G.; Howe, J.; Burton, D. J.; Liu, Z.; Xiao, X.; Thevuthasan, S.; Baer, D. R. In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion, Nano. Lett. 2012, 12, 1624-1632.

    Google Scholar 

  100. Abel, P. R.; Lin, Y.-M.; Celio, H.; Heller, A.; Mullins, C. B. Improving the stability of nanostructured silicon thin film lithium-ion battery anodes through their controlled oxidation, ACS Nano 2012, 6, 2506-2516.

    Google Scholar 

  101. Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires, J. Power Sources 2009, 189, 34-39.

    Google Scholar 

  102. Philippe, B.; Dedryvere, R.; Allouche, J.; Lindgren, F.; Gorgoi, M.; Rensmo, H.; Gonbeau, D.; Edstrom, K. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy, Chem. Mater., 2012, 24, 1107-1115.

    Google Scholar 

  103. Choi, N. S.; Yew, K. H.; Kim, H.; Kim, S. S.; Choi, W. U. Surface layer formed on silicon thin-film electrode in lithium bis (oxalate) borate-based electrolyte, J. Power Sources 2007, 172, 404-409.

    Google Scholar 

  104. Dalavi, S.; Guduru, P.; Lucht, B. L. Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes, J. Electrochem. Soc., 2012, 159, A642-A646.

    Google Scholar 

  105. Choi, N.S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S. S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources 2006, 161, 1254-1259.

    Google Scholar 

  106. Han, G. B.; Lee, J. N.; Choi, J. W.; Park, J. K. Tri (pentafluorophenyl) borane as an electrolyte additive for high performance silicon thin film electrodes in lithium ion batteries, Electrochim. Acta 2011 56, 8997-9003.

    Google Scholar 

  107. Han, G. B.; Ryou, M. H.; Cho, K. Y.; Lee, Y. M.; Park, J. K. Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode, J. Power Sources 2010, 195, 3709-3714.

    Google Scholar 

  108. Li, J. T.; Swiatowska, J.; Maurice, V.; Seyeux, A.; Huang, L.; Sun, S. G.; Marcus, P. XPS and ToF-SIMS study of electrode process on Sn-Ni alloy anodes for Li-ion batteries, J. Phys. Chem. C 2011, 115, 7012-7018.

    Google Scholar 

Download references

Acknowledgement

 This work is supported by the National Natural Science Foundation of China (No. 21003054, No. 21273084, and No. 21373092), the Joint Project of National Natural Science Foundation of China and Natural Science Foundation of Guangdong (No. U1134002), the Natural Science Foundation of Guangdong Province (No. 10351063101000001 and No. S2011040001731), and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20104407120008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, M., Xing, L., Li, W. (2014). Interphases Between Electrolytes and Anodes in Li-Ion Battery. In: Jow, T., Xu, K., Borodin, O., Ue, M. (eds) Electrolytes for Lithium and Lithium-Ion Batteries. Modern Aspects of Electrochemistry, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0302-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0302-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0301-6

  • Online ISBN: 978-1-4939-0302-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics