Skip to main content

Nonaqueous Electrolytes with Advances in Solvents

  • Chapter
  • First Online:
Electrolytes for Lithium and Lithium-Ion Batteries

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 58))

Abstract

Most of the liquid electrolytes used in commercial lithium-ion (Li-ion) cells are nonaqueous solutions, in which roughly 1 mol dm−3 of lithium hexafluorophosphate (LiPF6) salt is dissolved in a mixture of carbonate solvents selected from cyclic carbonates—ethylene carbonate and propylene carbonate—and linear carbonates—dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. In Sect. 2.1, the physicochemical properties of these carbonate solvents are listed and the phase diagrams and electrolytic conductivity data of mixed carbonate solvent systems are given. However, recent market demands for Li-ion cells with higher energy, higher power, and higher safety requires new solvents to improve the performance of cells in electrolytes based on carbonate solvents only. New heteroatom-containing organic solvents including fluorine, boron, phosphorous, and sulfur, which have been applied to lithium cells in recent years, are reviewed from the viewpoints of synthesis, physicochemical properties, and cell performance by four authors.

Section 2.2 mainly reviews the papers on novel fluorinated organic solvents, which include fluorinated lactones, fluorinated linear carboxylates, fluorinated cyclic carbonates, fluorinated linear carbonates, fluorinated monoethers, fluorinated diethers, and others. The physicochemical properties of typical fluorinated compounds are summarized in comparison with nonfluorinated counterparts.

Section 2.3 summarizes the recent promising progress of electrolyte solvents that contain boron atoms, particularly borate esters and cyclic borate esters. The authors also introduce some boron compounds acting as additives and supporting salts in electrolytes.

Section 2.4 reviews organophosphorous compounds as nonflammable or flame-retardant electrolytes for lithium-ion batteries. These include organic phosphates, phosphites, phosphonates, or phosphazenes, and a phosphonamidate as co-solvents or additives. The author introduces polymeric gel electrolytes containing these flame-retardant components.

Section 2.5 reviews papers on lithium and lithium-ion cells using sulfur-containing organic solvents, including sulfide, sulfoxide, sulfone, sulfite, sulfonate, and sulfate. Particularly, the performance of sulfones such as ethyl methyl sulfone and sulfolane as electrolyte solvents for high-voltage cells is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ue, M., Electrolytes: nonaqueous, In Encyclopedia of electrochemical power sources; Garche, J.; Dyer, C.; Moseley, P.; Ogumi, Z.; Rand, D.; Scrosati, B., Eds.; Elsevier: Amsterdam, Netherlands, 2009; Vol. 5; 71–84.

    Google Scholar 

  2. Ding, M. S., Liquid-solid phase diagrams of ternary and quaternary organic carbonates, J. Electrochem. Soc. 2004, 151, A731–A738.

    Google Scholar 

  3. Ding, M. S.; Xu, K.; Zhang, S. S.; Amine, K.; Henriksen, G. L.; Jow, T. R., Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF6 in ethylene carbonate-ethyl methyl carbonate, J. Electrochem. Soc. 2001, 148, A1196–A1204.

    Google Scholar 

  4. Sasaki, Y., The status and view for fluorine-containing organic solvents, In Advanced battery technologies-2011; the Electrochemical Society of Japan: Tokyo, Japan, 2011; 17–30.

    Google Scholar 

  5. Sasaki, Y., Organic electrolytes of secondary lithium batteries, Electrochemistry 2008, 76, 2–15.

    Google Scholar 

  6. Prager, J. H., Cyclic fluorocarbonates, US Patent 3,455,954: 1969.

    Google Scholar 

  7. Adcock, J. L.; Lagow, R. J., The synthesis of the perfluoroethers, “perfluoroglyme” and “perfluorodiglyme” by direct fluorination, J. Org. Chem. 1973, 38, 3617–3618.

    Google Scholar 

  8. Sasaki, Y.; Ebara, R.; Nanbu, N.; Takehara, M.; Ue, M., Direct fluorination of γ-butyrolactone, J. Fluorine Chem. 2001,108, 117–120.

    Google Scholar 

  9. Hasegawa, M; Ishi, H.; Fuchigami, T., Electroorganic synthesis under solvent-free conditions. Highly regioselective anodic monofluorination of cyclic ethers, lactones and a cyclic carbonate, Tetrahedron Lett. 2002, 43, 1503–1505.

    Google Scholar 

  10. Takehara, M.; Ebara, R.; Nanbu, N.; Ue, M.; Sasaki, Y., Electrochemical properties of fluoro-γ-butyrolactone and its application to lithium rechargeable cells, Electrochemistry 2003, 71, 1172–1176.

    Google Scholar 

  11. Nakajima, T.; Dan, K.; Koh, M., Effect of fluoroesters on the low temperature electrochemical characteristics of graphite electrode, J. Fluorine Chem. 1998, 87, 221–227.

    Google Scholar 

  12. Nakajima, T.; Dan, K.; Koh, M; Ino, T.; Shimizu, T., Effect of addition of fluoroethers to organic solvents for lithium ion secondary batteries, J. Fluorine Chem. 2001, 111, 167–174.

    Google Scholar 

  13. Chandrasekaran, R.; Koh, M; Ozhawa, Y.; Aoyama, H; Nakajima, T., Electrochemical cell studies on fluorinated natural graphite in propylene carbonate electrolyte with difluoromethyl acetate (MFA) additive for low temperature lithium battery application J. Chem. Sci. 2009, 121, 339–346.

    Google Scholar 

  14. Yamaki, J.; Yamazaki, I.; Egashira, M.; Okada, S., Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells, J. Power Sources 2001, 102, 288–293.

    Google Scholar 

  15. Sato, K.; Yamazaki, I.; Okada, S.; Yamaki, J., Mixed solvent electrolytes containing fluorinated carboxylic acid esters to improve the thermal stability of lithium metal anode cells, Solid State Ionics 2002, 148, 463–466.

    Google Scholar 

  16. Yamaki, J.; Tanaka, T.; Ihara, M.; Sato, K.; Egashira, M.; Watanabe, I.; Okada, S., Thermal stability of methyl difluoroacetate as a novel electrolyte solvent for lithium batteries electrolytes, Electrochemistry 2003, 71, 1154.

    Google Scholar 

  17. Ihara, M.; Hang, B. T.; Sato, K.; Egashira, M.; Okada, S.; Yamaki, J., Properties of carbon anodes and thermal stability in LiPF6/methyl difluoroacetate electrolyte, J. Electrochem. Soc. 2003, 150, A1476–A1483.

    Google Scholar 

  18. Nanbu, N.; Suzuki, Y.; Ohtsuki, K.; Meguro, T.; Takehara, M.; Ue, M.; Sasaki, Y., Physical and electrochemical properties of monofluorinated ethyl acetates for lithium rechargeable batteries, Electrochemistry 2010, 78, 446–449.

    Google Scholar 

  19. Sato, K.; Zhao, L.; Okada, S.; Yamaki, J., LiPF6/methyl difluoroacetate electrolyte with vinylene carbonate additive for Li-ion batteries, J. Power Sources 2011, 196, 5617–5622.

    Google Scholar 

  20. Kobayashi, M.; Inoguchi, T.; Iida, T.; Tanioka, T.; Kumase, H.; Fukai, Y., Development of direct fluorination technology for application to materials for lithium battery, J. Fluorine Chem. 2003, 120, 105–110.

    Google Scholar 

  21. McMillan, R.; Slegr, H.; Shu, Z. X.; Wang, W., Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, J. Power Sources 1999, 8182, 20–26.

    Google Scholar 

  22. Mogi, R.; Inaba, M.; Jeong, S.-K.; Iriyama, Y.; Abe, T.; Ogumi, Z., Effects of some organic additives on lithium deposition in propylene carbonate, J. Electrochem. Soc. 2002, 149, A1578–A1583.

    Google Scholar 

  23. Choi, N.-S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S.-S., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources 2006, 161, 1254–1259.

    Google Scholar 

  24. Profatilova, I. A.; Kim, S.-S.; Choi, N.-S., Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate, Electrochim. Acta 2009, 54, 4445–4450.

    Google Scholar 

  25. Hagiyama, K.; Suzuki, K.; Ohtake, M.; Shimada, M.; Nanbu, N.; Takehara, M.; Ue, M.; Sasaki, Y., Physical properties of substituted 1,3-dioxolan-2-ones, Chem. Lett. 2008, 37, 210–211.

    Google Scholar 

  26. Sasaki, Y.; Takimoto, K.; Nanbu, N.; Takehara, M.; Ue, M., Direct fluorination of propylene carbonate, In Meeting abstracts of the 6th Japan-France joint seminar on lithium ion batteries; Kohu, Yamanashi, Japan, 2006; 24.

    Google Scholar 

  27. Nanbu, N.; Takimoto, K.; Suzuki, K.; Ohtake, M.; Hagiyama, K.; Takehara, M.; Ue, M.; Sasaki, Y., Temperature dependence of physical constants of monofluororinated propylene carbonate as highly polar liquid, Chem. Lett. 2008, 37, 476–477.

    Google Scholar 

  28. Nanbu, N.; Takimoto, K.; Takehara, M.; Ue, M.; Sasaki, Y., Electrochemical properties of fluoropropylene carbonate and its application to lithium-ion batteries, Electrochem. Commun. 2008, 10, 783–786.

    Google Scholar 

  29. Inaba, M.; Kawatate, Y.; Funabiki, A.; Jeong, S.-K.; Abe, T.; Ogumi, Z., STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution, Electrochim. Acta 1999, 45, 99–105.

    Google Scholar 

  30. Arai, J.; Katayama, H.; Akahoshi, H., Binary mixed solvent electrolytes containing trifluoropropylene carbonate for lithium secondary batteries, J. Electrochem. Soc. 2002, 149, A217–A226.

    Google Scholar 

  31. Achiha, T.; Nakajima, T.; Ohzawa, Y.; Koh, M.; Yamauchi, A.; Kagawa, M.; Aoyama, H., Electrochemical behavior of nonflammable organo-fluorine compounds for lithium ion batteries, J. Electrochem. Soc. 2009, 156, A483–A488.

    Google Scholar 

  32. Achiha, T.; Nakajima, T.; Ohzawa, Y.; Koh, M.; Yamauchi, A.; Kagawa, M.; Aoyama, H., Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries, J. Electrochem. Soc. 2010, 157, A707–A712.

    Google Scholar 

  33. Takehara, M.; Watanabe, S.; Nanbu, N.; Ue, M.; Sasaki, Y., Synthesis of fluorinated dimethyl carbonates by direct fluorination, Synth. Commun. 2004, 34, 1367–1375.

    Google Scholar 

  34. Takehara, M.; Watanabe, S.; Nanbu, N.; Ue, M.; Sasaki, Y., Physical properties of monofluorodimethyl carbonate, Chem. Lett. 2004, 33, 338–339.

    Google Scholar 

  35. Sasaki, Y.; Takehara, M.; Watanabe, S.; Oshima, M.; Nanbu, N.; Ue, M., Electrolytic behavior and application to lithium batteries of monofluorinated dimethyl carbonate, Solid State Ionics 2006, 177, 299–303.

    Google Scholar 

  36. Nanbu, N.; Watanabe, S.; Takehara, M.; Ue, M.; Sasaki, Y., Electrolytic characteristics of fluoromethyl methyl carbonate for lithium rechargeable batteries, J. Electroanal. Chem. 2009, 625, 7–15.

    Google Scholar 

  37. Nanbu, N.; Takehara, M.; Watanabe, S.; Ue, M.; Sasaki, Y., Polar effect of successive fluorination of dimethyl carbonate on physical properties, Bull. Chem. Soc. Jpn. 2007, 80, 1302–1306.

    Google Scholar 

  38. Sasaki, Y.; Takehara, M.; Watanabe, S.; Nanbu, N.; Ue, M., Physical and electrolytic properties of difluorinated dimethyl carbonate, J. Fluorine Chem. 2004, 125, 1205–1209.

    Google Scholar 

  39. Takehara, M., Tsukimori, N.; Nanbu, N.; Ue, M.; Sasaki, Y., Physical and electrolytic properties of fluoroethyl methyl carbonate, Electrochemistry 2003, 71, 1201–1204.

    Google Scholar 

  40. Handa, M.; Kataoka, M.; Watanabe, M.; Sasaki, Y., Physical and donor–acceptor properties of 3-propyl-4-ethylsydnone, Bull. Chem. Soc. Jpn. 1997, 70, 315–320.

    Google Scholar 

  41. Tsukimori, N.; Nanbu, N.; Takehara, M.; Ue, M.; Sasaki, Y., Electrolytic properties of ethyl fluoroethyl carbonate and its application to lithium battery, Chem. Lett. 2008, 37, 368–369.

    Google Scholar 

  42. Sasaki, Y.; Satake, H.; Tsukimori, N.; Nanbu, N.; Takehara, M.; Ue, M., Physical and electrolytic properties of partially fluorinated methyl propyl carbonate and its application to lithium batteries, Electrochemistry 2010, 78, 467–470.

    Google Scholar 

  43. Smart, M. C.; Ratnakumar, B. V.; Ryan-Mowrey, V. S.; Surampudi, S.; Prakash, G. K. S.; Hu, J.; Cheung, I., Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes, J. Power Sources 2003, 119121, 359–367.

    Google Scholar 

  44. Kitagawa, T; Azuma, K.; Koh, M.; Yamaguchi, A.; Kagawa, M.; Sakata, H.; Miyawaki, H.; Nakazono, A.; Arima, H.; Yamagata, M.; Ishikawa, M., Application of fluorine-containing solvents to LiCoO2 cathode in high voltage operation, Electrochemistry 2010, 78, 345–348.

    Google Scholar 

  45. Arai, J., A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries, J. Appl. Electrochem. 2002, 32, 1071–1079.

    Google Scholar 

  46. Arai, J., Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries, J. Electrochem. Soc. 2003, 150, A219–A228.

    Google Scholar 

  47. Arai, J., No-flash-point electrolytes applied to amorphous carbon/Li1+xMn2O4 cells for EV use, J. Power Sources 2003, 119121, 388–392.

    Google Scholar 

  48. Morita, M.; Kawasaki, T.; Yoshimoto, N.; Ishikawa, M., Nonflammable organic electrolyte solution based on perfluoro-ether solvent for lithium ion batteries, Electrochemistry 2003, 71, 1067–1069.

    Google Scholar 

  49. Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y., Nonflammable hydrofluoroether for lithium-ion batteries: enhanced rate capability, cyclability, and low-temperature performance, J. Electrochem. Soc. 2009, 156, A272–A276.

    Google Scholar 

  50. Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F., Discharge behavior and rate performances of lithium-ion batteries in nonflammable hydrofluoroethers(II), J. Electrochem. Soc. 2010, 157, A190–A195.

    Google Scholar 

  51. Iwama, E.; Shimodate, F.; Oki, Y.; Naoi, K., Super-enhanced lithium-ion transport by an effective shift of solvation shell structure in branched hydrofluoroether electrolyte, Electrochemistry 2010, 78, 266–272.

    Google Scholar 

  52. Ikeda, K.; Kawasato, T.; Hiratsuka, K.; Morimoto, T., Nonaqueous electrolytic secondary battery; JP 3,557,724 (B2): 2004.

    Google Scholar 

  53. Sasaki, Y.; Shimazaki, G.; Nanbu, N.; Takehara, M.; Ue, M., Physical and electrolytic properties of partially fluorinated organic solvents and its application to secondary lithium batteries: partially fluorinated dialkoxyethanes, ECS Trans. 2009, 16(35), 23–31.

    Google Scholar 

  54. Blomgren, G. E., Properties, structures and conductivity of organic and inorganic electrolytes for lithium battery systems, In Lithium batteries; Gabano, J.-P., Ed.; Academic Press: London, United Kingdom, 1983; Ch. 2; 13–41.

    Google Scholar 

  55. Ue, M.; Ida, K.; Mori, S., Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors, J. Electrochem. Soc. 1994, 141, 2989–2996.

    Google Scholar 

  56. Nanbu, N.; Hagiyama, K.; Takehara, M.; Ue, M.; Sasaki, Y., Physical and electrolytic properties of difluorinated 3-methyl-2-oxazolidinones and their application to lithium rechargeable batteries, Electrochemistry 2010, 78, 450–453.

    Google Scholar 

  57. Suzuki, K.; Shin-Ya, M.; Ono, Y.; Matsumoto, T., Nanbu, N.; Takehara, M.; Ue, M.; Sasaki, Y., Physical and electrochemical properties of fluoroacetonitrile and its application to electric double-layer capacitors, Electrochemistry 2007, 75, 611–614.

    Google Scholar 

  58. Hagiyama, K.; Nanbu, N.; Takehara, M.; Ue, M.; Sasaki, Y., Electrolytic properties of α-fluorinated 1-methyl-2-pyrrolidinone, In Meeting abstracts of the 2002 fall meeting of the Electrochemical Society of Japan; Atsugi, Kanagawa, Japan, 2002; 99.

    Google Scholar 

  59. (a) Lu, Z.; MacNeil, D. D.; Dahn, J. R., Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)] O2 for lithium-ion batteries, Electrochem. Solid-State Lett. 2001, 4, A191–A194; (b) Ohzuku, T.; Makimura, Y., Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett. 2001, (7), 642–643; (c) Ohzuku, T.; Makimura, Y., Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries, Chem. Lett. 2001, (8), 744–745; (d) Ohzuku, T.; Ariyoshi, K.; Yamamoto, S.; Makimura, Y., A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4, Chem. Lett. 2001, (12), 1270–1271; (e) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R., Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2, J. Electrochem. Soc. 2002, 149, A778–A791; (f) Lu, Z. H.; Chen, Z. H.; Dahn, J. R., Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1), Chem. Mater. 2003, 15, 3214–3220; (g) Makimura, Y.; Ohzuku, T., Lithium insertion material of LiNi1/2Mn1/2O2 for advanced lithium-ion batteries, J. Power Sources 2003, 119121, 156–160.

    Google Scholar 

  60. (a) Xu, K.; Angell, C. A., High anodic stability of a new electrolyte solvent: unsymmetric noncyclic aliphatic sulfone, J. Electrochem. Soc. 1998, 145, L70–L72; (b) Xu, K.; Angell, C. A., Sulfone-based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 2002, 149, A920–A926; (c) Abouimrane, A.; Belharouak, I.; Amine, K., Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochem. Commun. 2009, 11, 1073–1076; (d) Sun, X,; Angell, C. A., Doped sulfone electrolytes for high voltage Li-ion cell applications, Electrochem.Commun. 2009, 11, 1418–1421.

    Google Scholar 

  61. Abu-Lebdeh, Y.; Davidson, I., New electrolytes based on glutaronitrile for high energy/power Li-ion batteries, J. Power Sources 2009, 189, 576–579.

    Google Scholar 

  62. (a) Sasaki, Y.; Takehara, M.; Watanabe, S.; Oshima, M.; Nanbu, N.; Ue, M., Electrolytic behavior and application to lithium batteries of monofluorinated dimethyl carbonate, Solid State Ionics 2006, 177, 299–303; (b) Nanbu, N.; Takimoto, K.; Takehara, M.; Ue, M.; Sasaki, Y., Electrochemical properties of fluoropropylene carbonate and its application to lithium-ion batteries, Electrochem. Commun. 2008, 10, 783–786.

    Google Scholar 

  63. Gaussian 09 is the current integrated program including several molecular orbital methods, see Gaussian Inc. http://www.gaussian.com/

  64. For example, Minerals yearbook, Volume I. Metals and minerals, USGS: 2009.

    Google Scholar 

  65. Merck Index, 13th Edition, 2001.

    Google Scholar 

  66. (a) Kidd, R. G., In NMR of newly accessible nuclei, Vol. 2; Laszlo, P., Ed.; Academic Press: New York, NY, 1983; (b) Noeth, H.; Wrackmeyer, B., In Nuclear magnetic resonance spectroscopy of boron compounds; Springer: Berlin, 1987; (c) Kennedy, J. D., In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, NY, 1987.

    Google Scholar 

  67. Tanaka, Y.; Kaneko, J.; Minoshima, M.; Iriyama, Y.; Fujinami, T., Electrochemical properties of a mixed boric ester as a novel electrolyte solvent, Electrochemistry 2010, 78, 397–399.

    Google Scholar 

  68. Hirono, T.; Tamada, H.; Kishimoto, A.; Kaneko, J.; Iriyama, Y.; Tanaka, Y.; Fujinami, T., High voltage stability of interfacial reaction at the LiMn2O4 thin-film electrodes/liquid electrolytes with boroxine compounds, J. Electrochem. Soc. 2010, 157, A667–A681.

    Google Scholar 

  69. Shanmukaraj, D.; Grugeon, S.; Gachot, G.; Laruelle, S.; Mathiron, D.; Tarascon, J.-M.; Armand, M., Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry, J. Am. Chem. Soc. 2010, 132, 3055–3062.

    Google Scholar 

  70. (a) Lee, H. S.; Yang, X. Q.; Sun, X.; McBreen, J., Synthesis of a new family of fluorinated boronate compounds as anion receptors and studies of their use as additives in lithium battery electrolytes, J. Power Sources 2001, 9798, 566–569; (b) Sun, X.; Lee, H. S.; Yang, X. Q.; McBreen, J., A new additive for lithium battery electrolytes based on an alkyl borate compound, J. Electrochem. Soc. 2002, 149, A355–A359; (c) Li, L. F.; Lee, H. S.; Lee, H.; Yang, X. Q.; Nam, K. W.; Yoon, W. S.; McBreen, J.; Huang, X. J., New electrolytes for lithium ion batteries using LiF salt and boron based anion receptors, J. Power Sources 2008, 184, 517–521.

    Google Scholar 

  71. (a) Lee, H. S.; Sun, X.; Yang, X. Q.; McBreen, J., Synthesis and study of new cyclic boronate additives for lithium battery electrolytes, J. Electrochem. Soc. 2002, 149, A1460–A1465; (b) Lee, H. S.; Ma, X. Z. F.; Yang, X. Q.; Sun, X.; McBreen, J., Synthesis of a series of fluorinated boronate compounds and their use as additives in lithium battery electrolytes, J. Electrochem. Soc. 2004, 151, A1429–A1435; (c) Chen, Z.; Amine, K., Bifunctional electrolyte additive for lithium-ion batteries, Electrochem. Commun. 2007, 9, 703–707; (d) Chen, Z.; Amine, K., Computational estimates of fluoride affinity of boron-based anion receptors, J. Electrochem. Soc. 2009, 156, A672–A676; (e) Weng, W.; Zang, Z.; Schlueter, J. A.; Redfern, P. C.; Curtiss, L. A.; Amine, K., Improved synthesis of a highly fluorinated boronicester as dual functional electrolyte additive for lithium-ion batteries, J. Power Sources, 2011, 196, 2171–2178.

    Google Scholar 

  72. (a) Xu, W.; Angell, C. A., LiBOB and its derivatives. Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions, Electrochem. Solid-State Lett. 2001, 4, E1–E4; (b) Xu, W.; Shusterman, A. J.; Videa, M.; Velikov, V.; Marzke, R.; Angell, C. A., Structures of orthoborate anions and physical properties of their lithium salts in nonaqueous solutions, J. Electrochem. Soc. 2003, 150, E74–E80.

    Google Scholar 

  73. (a) Xu, K.; Lee, U.; Zhang, S. S.; Alen, J. L.; Jow, T. R., Graphite/electrolyte interface formed in LiBOB-based electrolytes, Electrochem.Solid-State Lett. 2004, 7, A273–A277; (b) Xu, K.; Lee, U.; Zhang, S. S.; Jow, T. R., Graphite/electrolyte interface formed in LiBOB-based electrolytes, J. Electrochem. Soc. 2004, 151, A2106–A2112.

    Google Scholar 

  74. (a) Zhang, S. S., An unique lithium salt for the improved electrolyte of Li-ion battery, Electrochem. Commun. 2006, 8, 1423–1428; (b) Zhang, S. S., Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte, J. Power Sources 2007, 163, 713–718.

    Google Scholar 

  75. (a) Barthel, J.; Buestrich, R.; Gores, H. J.; Schmidt, M.; Wuhr, M., A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes, J. Electrochem. Soc. 1997, 144, 3866–3870; (b) Sasaki, Y.; Handa, M.; Kurashima, K.; Tonuma, T.; Usami, K., Application of lithium organoborate with salicylic ligand to lithium battery electrolyte, J. Electrochem. Soc. 2001, 148, A999–A1003; (c) Sasaki, Y.; Handa, M.; Sekiya, S.; Kurashima, K.; Usami, K., Application to lithium battery electrolyte of lithium chelate compound with boron, J. Power Sources 2001, 9798, 561–565; (d) Xue, Z.-M.; Ding, Y.-Z.; Chen, C.-H., A DFT study of electronic structures, energies, and molecular properties of lithium bis[croconate]borate and its derivatives, Electrochim. Acta 2007, 53, 990–997.

    Google Scholar 

  76. (a) Nanbu, N.; Shibazaki, T.; Sasaki, Y., Thermal and electrolytic behavior of lithium chelatoborates and application to lithium batteries, Electrochemistry 2003, 71, 1205–1213; (b) Xue, Z.-M.; Wu, K.-N.; Liu, B.; Chen, C.-H., New lithium salts with croconato-complexes of boron for lithium battery electrolytes, J. Power Sources 2007, 171, 944–947.

    Google Scholar 

  77. (a) Barthel, J.; Buestrich, R.; Carl, E.; Gores, H. J., A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. III. Synthesis and properties of some lithium organo borates J. Electrochem. Soc. 1996, 143, 3572–3575; (b) Barthel, J.; Buestrich, R.; Gores, H. J.; Schmidt, M.; Wuhr, M., A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes, J. Electrochem. Soc. 1997, 144, 3866–3870; (c) Xue, Z.-M.; Chen, C.-H., Density functional theory study on lithium bis[1,2-benzenediolato (2-)-O,Oʹ] borate and its derivatives: electronic structures, energies, and molecular properties, Electrochim. Acta 2004, 49, 5167–5175; (d) Aurbach, D.; Gnanaraj, J. S.; Geissler, W.; Schmidt, M., Vinylene Carbonate and Li salicylatoborate as additives in LiPF3(CF2CF3)3 solutions for rechargeable Li-ion batteries, J. Electrochem. Soc. 2004, 151, A23–A30.

    Google Scholar 

  78. Lisbona, D.; Snee, T., A review of hazards associated with primary lithium and lithium-ion batteries, Process Safety and Environmental Protection 2011, 89, 434–442.

    Google Scholar 

  79. Scrosati, B.; Garch, J., Lithium batteries: status, prospects and future, J. Power Sources 2010, 195, 2419–2430.

    Google Scholar 

  80. Murata, K.; Izuchi, S; Yoshihisa, Y., An overview of the research and development of solid polymer electrolyte batteries, Electrochim. Acta 2000, 45, 1501–1508.

    Google Scholar 

  81. Aihara, Y.; Kuratomi, J.; Bando, T.; Iguchi, T.; Yoshida, H.; Ono, T.; Kuwana, K., Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance, J. Power Sources 2003, 114, 96–104.

    Google Scholar 

  82. Rodrigues, L. C.; Barbosa, P. C.; Silva, M. M.; Smith, M. J., Electrochemical and thermal properties of polymer electrolytes based on poly(epichlorohydrin-co-ethylene oxide-co-allyl glycidyl ether), Electrochim. Acta 2007, 53, 1427–1431.

    Google Scholar 

  83. Koura, N.; Iizuka, K.; Idemoto, Y., Ui, K., Li and Li-Al negative electrode characteristics for the lithium secondary battery with a nonflammable SOCl2, Li added, LiCl saturated AlCl3-EMIC molten salt electrolyte, Electrochemistry 1999, 67, 706–712.

    Google Scholar 

  84. Nakagawa, H.; Izuchi, S.; Kuwana, K.; Nukuda, T.; Aihara, Y., Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt, J. Electrochem. Soc. 2003, 150, A695–A700.

    Google Scholar 

  85. Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Kihira, N.; Watanabe, M.; Terada, N., Lithium secondary batteries using modified-imidazolium room temperature ionic liquids, J. Phys. Chem. B 2006, 110, 10228–10230.

    Google Scholar 

  86. Ui, K.; Yamamoto, K.; Ishikawa, K.; Minami, T.; Takeuchi, K.; Itagaki, M.; Watanabe, K.; Koura, N., Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: performance of electroplated Al film negative electrode, J. Power Sources 2008, 183, 347–350.

    Google Scholar 

  87. Wang, X. M.; Yasukawa, E.; Kasuya, S., Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries, I. Fundamental properties, J. Electrochem. Soc. 2001, 148, A1058–A1065.

    Google Scholar 

  88. Arai, J., A novel non-flammable electrolytes containing methyl nonafluorobutyl ether for lithium secondary batteries, J. Appl. Electrochem. 2002, 32, 1071–1079.

    Google Scholar 

  89. Morita, M.; Kawasaki, T.; Yoshimoto, N.; Ishikawa, M., Nonflammable organic electrolyte solution based on perfluoro-ether solvent for lithium ion batteries, Electrochemistry 2003, 71, 1067–1069.

    Google Scholar 

  90. Zhang, S. S.; Xu, K.; Jow, T. R., Tris(2,2,2-trifluoroethyl)phosphate as a co-solvent for nonflammable electrolytes in Li-ion batteries, J. Power Sources 2003, 113, 166–172.

    Google Scholar 

  91. Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H., Dimethylmethylphosphonate (DMMP) as an efficient flame retardant additives for the lithium-ion battery electrolytes, J. Power Sources 2007, 173, 562–564.

    Google Scholar 

  92. Murayama, M.; Sonoyama, N.; Yamada, A.; Kanno, R., Material design of new lithium ionic conductor, thio-LISICON, in the Li2S-P2S5 system, Solid State Ionics 2004, 170, 173–180.

    Google Scholar 

  93. Nagao, M.; Hayashi, A.; Tatsumisago, M., All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode, J. Power Sources 2011, 196, 6902–6905.

    Google Scholar 

  94. Morita, M.; Niida, Y.; Yoshimoto, N.; Adachi, K., Polymeric gel electrolyte containing alkylphosphate for lithium ion batteries, J. Power Sources 2005, 146, 427–430.

    Google Scholar 

  95. Hayashi, A.; Harayama, T.; Mizuno, F.; Tatsumisago, M., Mechanochemical synthesis of hybrid electrolytes from the Li2S-P2S5 glasses and polyethers, J. Power Sources 2006, 163, 289–293.

    Google Scholar 

  96. Noda A.; Watanabe, M., Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts, Electrochim. Acta 2000, 45, 1265–1270.

    Google Scholar 

  97. Shin, J.-H.; Henderson, W. A.; Passerini, S., Ionic liquids to rescue? Overcoming the ionic conductivity limitations of polymer electrolytes, Electrochem. Commun. 2003, 5, 1016–1020.

    Google Scholar 

  98. Egashira, M.; Todo, H.; Yoshimoto, N.; Morita, M., Lithium ion conduction in ionic liquid-based gel polymer electrolyte, J. Power Sources 2008, 178, 729–735.

    Google Scholar 

  99. Lalia, B. S.; Yoshimoto, N.; Egashira, M.; Morita, M., A mixture of triethylphosphate and ethylene carbonate as a safe additives for ionic liquid-based electrolytes of lithium ion batteries, J. Power Sources 2010, 195, 7426–7431.

    Google Scholar 

  100. Annakutty, K. S.; Kishore, K., A novel approach to structure-flammability correlation in polyphosphate esters, Polymer 1988, 29, 1273–1276.

    Google Scholar 

  101. Wang, X.; Yasukawa, E.; Kasuya, S., Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries, II. The use of amorphous carbon anode, J. Electrochem. Soc. 2001, 148, A1066–A1071.

    Google Scholar 

  102. Wang, C. S.; Shieh, J. Y.; Sun, Y. M., Synthesis and properties of phosphorus containing PET and PEN (I), J. Applied Polymer Science 1998, 70, 1959–1964.

    Google Scholar 

  103. Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R., An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, J. Electrochem. Soc. 2002, 149, A622–A626.

    Google Scholar 

  104. Ota, H.; Kominato, A.; Chun, W. J.; Yasukawa, E.; Kasuya, S., Effect of cyclic phosphate additive in non-flammable electrolyte, J. Power Sources 2003, 119121, 393–398.

    Google Scholar 

  105. Xu, K.; Zhang, S.; Allen, J. L.; Jow, T. R., Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, J. Electrochem. Soc. 2002, 149, A1079–A1082.

    Google Scholar 

  106. Morimoto, E.; Yoshimoto, N.; Egashira, M.; Morita, M., Cathode performance of LiMn2O4 in nonflammable organic electrolyte solutions containing alkylphosphate, In Extended abstract of 56th annual meeting of international society of electrochemistry (56th ISE), Busan, Korea, 2005; 1132.

    Google Scholar 

  107. Shigematsu, Y.; Ue, M.; Yamaki, J.-I., Thermal behavior of charged graphite and LixCoO2 in electrolytes containing alkylphosphates for lithium-ion cell, J. Electrochem. Soc. 2009, 156, A176–A180.

    Google Scholar 

  108. Aurbach, D.; Ein-Eli, Y., The study of Li-graphite intercalation process in several electrolyte systems using in situ X-ray diffraction, J. Electrochem. Soc. 1995, 142, 1746–1752.

    Google Scholar 

  109. Ein-Eli, Y.; McDevitt, S. F.; Aurbach, D.; Markovsky, B.; Schecheter, A., Methyl propyl carbonate: A promising single solvent for Li-ion battery, J. Electrochem. Soc. 1997, 144, L180–L184.

    Google Scholar 

  110. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries, J. Power Sources 2006, 162, 1379–1394.

    Google Scholar 

  111. Wang, X.; Yamada, C.; Naito, H.; Segami, G.; Kibe, K., High-concentration trimethyl phosphate-based nonflammable electrolytes with improved charge-discharge performance of a graphite anode for lithium-ion cells, J. Electrochem. Soc. 2006, 153, A135–A139.

    Google Scholar 

  112. Feng, J. K.; Sun, X. J.; Ai, X. P.; Cao, Y. L.; Yang, H. X., Dimethyl methyl phosphate: a new nonflammable electrolyte solvent for lithium-ion batteries, J. Power Sources 2008, 184, 570–573.

    Google Scholar 

  113. Yamaki, J.; Yamazaki, I.; Egashira, M.; Okada, S., Thermal studies of fluorinated ester as a novel candidate for electrolyte solvent of lithium metal anode rechargeable cells, J. Power Sources 2001, 102, 288–293.

    Google Scholar 

  114. Ding, M. S.; Xu, K.; Jow, T. R., Effects of tris(2,2,2-trifluoroethyl) phosphate as a flame-retarding cosolvent on physicochemical properties of electrolytes of LiPF6 in EC-PC-EMC of 3:3:4 weight ratios, J. Electrochem. Soc. 2001, 149, A1489–1498.

    Google Scholar 

  115. Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R., Evaluation of fluorinated alkylphosphates as flame retardants in electrolytes for Li-ion batteries I. Physical and electrochemical properties, J. Electrochem. Soc. 2003, 150, A161–A169.

    Google Scholar 

  116. Xu, K.; Zhang, S.; Allen, J. L.; Jow, T. R., Evaluation of fluorinated alkylphosphates as flame retardants in electrolytes for Li-ion batteries II. Performance in cell. J. Electrochem. Soc. 2003, 150, A170–A175.

    Google Scholar 

  117. Xiang, H. F.; Jin, Q. Y.; Chen, C. H.; Ge, X. W.; Guo, S.; Sun, J. H., Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries, J. Power Sources 2007, 174, 335–341.

    Google Scholar 

  118. Xiang, H. F.; Jin, Q. Y.; Wang, R.; Chen, C. H.; Ge, X. W., Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12, J. Power Sources 2008, 179, 351–356.

    Google Scholar 

  119. Dalavi, S.; Xu, M.; Ravdel, B.; Zhou, L.; Lucht, B. L., Nonflammable electrolytes for lithium-ion batteries containing dimethyl methylphosphonate, J. Electrochem. Soc. 2010, 157, A1113–A1120.

    Google Scholar 

  120. Wu, L.; Song, Z.; Liu, L.; Guo, X.; Kong, L.; Zhan, H.; Zhou, Y.; Li, Z., A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries, J. Power Sources 2009, 188, 570–573.

    Google Scholar 

  121. Yao, X. L.; Xie, S.; Chen, C. H.; Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X., Comparative study of trimethyl phosphite as electrolyte additives in lithium ion batteries, J. Power Sources 2005, 144, 170–175.

    Google Scholar 

  122. Xu, H. Y.; Xie, S.; Wang, Q. Y.; Yao, X. L.; Wang, Q. S.; Chen, C. H., Electrolyte additive trimethyl phosphite for improving electrochemical performance and thermal stability of LiCoO2 cathode, Electrochim. Acta 2006, 52, 636–642.

    Google Scholar 

  123. Zhang, S. S.; Xu, K.; Jow, T. R., A thermal stabilizer for LiPF6-based electrolytes of Li-ion cells, Electrochem. Solid-State Lett, 2002, 5, A206–A208.

    Google Scholar 

  124. Wang, Q.; Sun, J.; Yao, X.; Chen, C., 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte, Electrochem. Solid-State Lett. 2005, 8, A467–A470.

    Google Scholar 

  125. Wang, Q.; Sun, J.; Chen, C., Enhancing the thermal stability of LiCoO2 electrode by 4-isopropyl phenyl diphenyl phosphate in lithium ion batteries, J. Power Sources 2006, 162, 1363–1366.

    Google Scholar 

  126. Wang, Q.; Ping, P.; Sun, J.; Chen, C., Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive, J. Power Sources 2010, 195, 7457–7461.

    Google Scholar 

  127. Zhou, D.; Li, W.; Tan, C.; Zuo, X.; Huang, Y., Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries, J. Power Sources 2008, 184, 589–592.

    Google Scholar 

  128. Feng, J. K.; Yao, Y. L.; Ai, X. P.; Yang, H. X., Tri-(4-methokythphenyl) phosphate: a new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries, Electrochim. Acta 2008, 53, 8265–8268.

    Google Scholar 

  129. Tsujikawa, T.; Yabuta, K.; Matsushita, T.; Matsushima, T.; Hayashi, K.; Arakawa, M., Characteristics of lithium-ion battery with non-flammable electrolyte, J. Power Sources 2009, 189, 429–434.

    Google Scholar 

  130. Lee, C. W.; Venkatachalapathy, R.; Prakash, J., A novel flame-retardant additive for lithium batteries, Electrochem. Solid-State Lett, 2000, 3, 63–65.

    MATH  Google Scholar 

  131. Sazhin, S. V.; Harrup, M. K.; Gering, K. L., Characterization of low flammability electrolytes for lithium-ion batteries, J. Power Sources 2011, 196, 3433–3438.

    Google Scholar 

  132. Hu, J.; Jin, Z.; Zhong, H.; Zhan, H.; Zhou, Y.; Li, Z., A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries, J. Power Sources 2012, 197, 297–300.

    Google Scholar 

  133. Morford, R. V.; Kellam III, E. C.; Hofmann, M. A.; Allcock, H. R., A fire-retardant organophosphorus gel polymer electrolyte additive for use in rechargeable lithium batteries, Solid State Ionics 2000, 133, 171–177.

    Google Scholar 

  134. Yoshimoto, N.; Niida, Y.; Egashira, M.; Morita, M., Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries, J. Power Sources 2006, 163, 238–242.

    Google Scholar 

  135. Yoshimoto, N.; Goto, D.; Egashira, M.; Morita, M., Alkylphosphate-based nonflammable gel electrolyte for LiMn2O4 positive electrode in lithium-ion battery, J. Power Sources 2008, 185, 1425–1428.

    Google Scholar 

  136. Lalia, B. S.; Fujita, T; Yoshimoto, N.; Egashira, M.; Morita, M., Electrochemical performance of nonflammable gel electrolyte containing triethylphosphate, J. Power Sources 2009, 186, 211–215.

    Google Scholar 

  137. Lalia, B. S.; Yoshimoto, N.; Egashira, M.; Morita, M., Electrochemical performances of non-flammable gel electrolyte for lithium ion battery using LiFePO4 positive electrode, Electrochemistry 2010, 78, 332–335.

    Google Scholar 

  138. McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X., New approaches to the design of polymer and liquid electrolytes for lithium batteries, J. Power Sources 2000, 89, 163–167.

    Google Scholar 

  139. Tabata, S.; Hirakimoto, T.; Nishimura, M.; Watanabe, M., Synthesis of Lewis-acid boric acid ester monomer and effect of its addition to electrolyte solutions and polymer gel electrolytes on their ion transport properties, Electrochim. Acta 2003, 48, 2105–2112.

    Google Scholar 

  140. Xu, W.; Sun, X. G.; Angell, C. A., Anion-trapping and polyanion electrolytes based on acid-in-chain borate polymers, Electrochim. Acta 2003, 48, 2255–2266.

    Google Scholar 

  141. Lalia, B. S.; Yoshimoto, N.; Egashira, M.; Morita, M., Effects of Lewis-acid polymer on the electrochemical properties of alkylphosphate-based non-flammable gel electrolyte, J. Power Sources 2009, 194, 531–535.

    Google Scholar 

  142. Blomgren, G. E., Properties, structures and conductivity of organic and inorganic electrolytes for lithium battery systems, In Lithium batteries; Gabano, J.-P., Ed.; Academic Press: London, United Kingdom, 1983; Ch. 2; 13–41.

    Google Scholar 

  143. Ue, M., Thinking way in electrolyte materials, In 50th Electrochemistry seminar; Kansai branch of the Electrochemical Society of Japan: Osaka, Japan, 2010.

    Google Scholar 

  144. Ue, M., Electrolyte technologies supporting the progress of lithium batteries, In 2012 Taipei forum on large format lithium batteries; Taipei, Taiwan, 2012.

    Google Scholar 

  145. Tamamitsu, K., Aluminum electrolytic capacitors using sulfolane as an electrolyte solvent, J. Technology and Education 2003, 10, 115–120.

    Google Scholar 

  146. Ue, M.; Takehara, M.; Takeda, M., Triethylmethylammonium tetrafluoroborate as a highly soluble supporting electrolyte salt for electrochemical capacitors, Denki Kagaku 1997, 65, 969–971.

    Google Scholar 

  147. Ue, M.; Murakami, A.; Nakamura, S., Anodic stability of several anions examined by ab initio molecular orbital and density functional theories, J. Electrochem. Soc. 2002, 149, A1572–A1577.

    Google Scholar 

  148. Kumar, T. P.; Prabhu, P. V. S. S.; Srivastava, A. K.; Kumar, U. B.; Ranganathan, R.; Gangadharan, R., Conductivity and viscosity studies of dimethyl sulfoxide (DMSO)-based electrolyte solutions at 25°C, J. Power Sources 1994, 50, 283–294.

    Google Scholar 

  149. Prisyazhnii, V. D.; Sirenko, V. I.; Potapenko, O. V.; Zmievs’ka, T. A., Solutions of lithium benzenesulfonate in dimethyl sulfoxide as electrolytes for lithium-based batteries, Dopov. Nats. Akad. Nauk Ukr. 2007, 136–141.

    Google Scholar 

  150. Fouache-Ayoub, S.; Garreau, M.; Prabhu, P. V. S. S.; Thevenin, J., Mass-transport properties of lithium surface layers formed in sulfolane-based electrolytes, J. Electrochem. Soc. 1990, 137, 1659–1665.

    Google Scholar 

  151. Xu, K.; Angell, C. A., Sulfone-based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 2002, 149, A920–A926.

    Google Scholar 

  152. Giwa, C. O., Feasibility study of sulfone-based electrolytes for a medium-temperature reserve cell concept, J. Power Sources 1993, 42, 389–397.

    Google Scholar 

  153. Bach, S.; Baffier, N.; Pereira-Ramos, J. P.; Messina, R., Rechargeable γ-MnO2 for lithium batteries using a sulfone-based electrolyte at 150°C, J. Power Sources 1993, 4344, 569–575.

    Google Scholar 

  154. Xu, K.; Angell, C. A., High anodic stability of a new electrolyte solvent: unsymmetric noncyclic aliphatic sulfone, J. Electrochem. Soc. 1998, 145, L70–L72.

    Google Scholar 

  155. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes, J. Electrochem. Soc. 1999, 146, 470–472.

    Google Scholar 

  156. Wrodnigg, G. H.; Wrodnigg, T. M.; Besenhard, J. O.; Winter, M., Propylene sulfite as film-forming electrolyte additive in lithium ion batteries, Electrochem. Commun. 1999, 1(3), 148150,

    Google Scholar 

  157. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?, J. Power Sources 2001, 9798, 592–594.

    Google Scholar 

  158. Ue, M., Role-assigned electrolytes: additives, In Lithium-ion batteries; Yoshio, M.; Brodd, R. J.; Kozawa, A., Eds.; Springer: New York, NY, 2009; Ch. 4; 75–115.

    Google Scholar 

  159. Yu, B. T.; Qiu, W. H.; Li, F. S.; Cheng, L., A study on sulfites for lithium-ion battery electrolytes, J. Power Sources 2006, 158, 1373–1378.

    Google Scholar 

  160. Park, G.; Nakamura, H.; Lee, Y.; Yoshio, M., The importance role of additives for improved lithium ion battery safety, J. Power Sources 2009, 189, 602–606.

    Google Scholar 

  161. Xu, M.; Li, W.; Lucht, B. L., Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries, J. Power Sources 2009, 193, 804–809.

    Google Scholar 

  162. Jeong, S. K.; Lee, H. N.; Kim, Y. S., Thermal stability of surface film formed on a graphite negative electrode in lithium secondary batteries, J. Korean Electrochem. Soc. 2011, 14, 157–162.

    Google Scholar 

  163. Han, Y. K.; Lee, S. U.; Ok, J. H.; Cho, J. J.; Kim, H. J., Theoretical studies of the solvent decomposition by lithium atoms in lithium-ion battery electrolyte, Chem. Phys. Lett. 2002, 360, 359–366.

    Google Scholar 

  164. Sano, A.; Maruyama, S., Decreasing the initial irreversible capacity loss by addition of cyclic sulfate as electrolyte additives, J. Power Sources 2009, 192, 714–718.

    Google Scholar 

  165. Yao, Y. W.; Xu, J.; Yao, W. H.; Wang, Z. C.; Yang, Y., Effect of ethylene sulfate as electrolyte additive on performance of Li-ion batteries, Yingyong Huaxue 2010, 27, 823–828.

    Google Scholar 

  166. Guyomard, D.; Tarascon, J. M., Rechargeable Li1+xMn2O4/carbon cells with a new electrolyte composition: potentiostatic studies and application to practical cells, J. Electrochem. Soc. 1993, 140, 3071–3081.

    Google Scholar 

  167. Seel, J. A.; Dahn, J. R., Electrochemical intercalation of PF6 into graphite, J. Electrochem. Soc. 2000, 147, 892–898.

    Google Scholar 

  168. Lu, Z. H.; Dahn, J. R., Can all the lithium be removed from T/2 Li2/3[Ni1/3Mn2/3]O2?, J. Electrochem. Soc. 2001, 148, A710–A715.

    Google Scholar 

  169. Park, S. H.; Winnick, J.; Kohl, P. A., Investigation of the lithium couple on Pt, Al, and Hg electrodes in lithium imide-ethyl methyl sulfone, J. Electrochem. Soc. 2002, 149, A1196–A1200.

    Google Scholar 

  170. Abouimrane, A.; Belharouak, I.; Amine, K., Sulfone-based electrolytes for high-voltage Li-ion batteries, Electrochem. Commun. 2009, 11, 1073–1076.

    Google Scholar 

  171. Sun, X. G.; Angell, C. A., New sulfone electrolytes for rechargeable lithium batteries. part I. oligoether-containing sulfones, Electrochem. Commun. 2005, 7, 261–266.

    Google Scholar 

  172. Sun, X. G.; Angell, C. A., New sulfone electrolytes, Solid State Ionics 2004, 175, 257–260.

    Google Scholar 

  173. Shao, N.; Sun, X. G.; Dai, S.; Jiang, D. E., Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries, J. Phys. Chem. B 2011, 115, 12120–12125.

    Google Scholar 

  174. Sun, X. G.; Angell, C. A., Doped sulfone electrolytes for high voltage Li-ion cell applications, Electrochem. Commun. 2009, 11, 1418–1421.

    Google Scholar 

  175. Watarai, A.; Tokuda, H.; Kawai, T.; Ue, M., Development of electrolytes for highly safe lithium-ion batteries, In 216th Electrochemical society meeting; Vienna, Austria, 2009.

    Google Scholar 

  176. Ue, M.; Kagimoto, J.; Tokuda, H.; Kawai, T., Sulfolane-based LIB electrolytes for HEV applications, In 5th International conference on polymer batteries and fuel cells; Argonne, IL, 2011.

    Google Scholar 

  177. Ue, M.; Kagimoto, J.; Tokuda, H.; Kawai, T., High-safety LIB electrolytes for HEV applications, In 6th Asian conference on electrochemical power sources; Chennai, India, 2012.

    Google Scholar 

  178. Shao, N.; Sun, X. G.; Dai, S.; Jiang, D. E., Oxidation potentials of functionalized sulfone solvents for high-voltage Li-ion batteries: a computational study, J. Phys. Chem. B 2012, 116, 3235–3238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ue, M., Sasaki, Y., Tanaka, Y., Morita, M. (2014). Nonaqueous Electrolytes with Advances in Solvents. In: Jow, T., Xu, K., Borodin, O., Ue, M. (eds) Electrolytes for Lithium and Lithium-Ion Batteries. Modern Aspects of Electrochemistry, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0302-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0302-3_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0301-6

  • Online ISBN: 978-1-4939-0302-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics