Skip to main content

Feasibility of Electroencephalography for Direct Assessment of Concussion

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

In this chapter, we will focus on sport-related concussions as studied through the use of electroencephalography. It should be noted that in this chapter the terms concussion and mild traumatic brain injury are used interchangeably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roozenbeek B, Maas A, Menon D. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol. 2013;9(4):231–6.

    Article  PubMed  Google Scholar 

  2. Jordan B. The clinical spectrum of sport-related traumatic brain injury. Nat Rev Neurol. 2013;9(4):222–30.

    Article  CAS  PubMed  Google Scholar 

  3. Gaetz M, Bernstein D. The current status of electrophysiologic procedures for the assessment of mild traumatic brain injury. J Head Trauma Rehabil. 2001;16(4):386–405.

    Article  CAS  PubMed  Google Scholar 

  4. Teasdale T, Engberg A. Suicide after traumatic brain injury: a population study. J Neurol Neurosurg Psychiatry. 2001;71(4):436–40.

    Article  CAS  PubMed  Google Scholar 

  5. Uryu K, Laurer H, McIntosh T, Praticò D, Martinez D, Leight S, Lee V, Trojanowski J. Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosci. 2002;22(2):446–54.

    CAS  PubMed  Google Scholar 

  6. Blaylock R, Maroon J. Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy—a unifying hypothesis. Surg Neurol. 2011;2(1):107.

    Article  Google Scholar 

  7. Barnes S, Walter K, Chard K. Does a history of mild traumatic brain injury increase suicide risk in veterans with PTSD? Rehabil Psychol. 2012;57(1):18–26.

    Article  PubMed  Google Scholar 

  8. Arciniegas D. Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. Int J Psychophysiol. 2011;82(1):41–52.

    Article  PubMed  Google Scholar 

  9. Bigler E, Maxwell W. Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging Behav. 2012;6(2):108–36.

    Article  PubMed  Google Scholar 

  10. Berger H. Über das Elektroenkephalogram des Menschen. Arch Psychiatry. 1929;87:527–70.

    Article  Google Scholar 

  11. Glaser M, Sjaardem H. Value of the electroencephalogram in craniocerebral injuries. J Nerv Ment Dis. 1944;99(4):433.

    Article  Google Scholar 

  12. Jasper H, Kershman J, Elvidge A. Electroencephalographic study in clinical cases of injury of the head. Arch Neurol Psychiatry. 1940;10:328–48.

    Google Scholar 

  13. Williams D. The significance of an abnormal electroencephalogram. J Neurol Psychiatry. 1941;4(3–4):257–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Geets W, Louette N. Early EEG in 300 cerebral concussions. Rev Electroencephalogr Neurophysiol Clin. 1985;14(4):333–8.

    Article  CAS  PubMed  Google Scholar 

  15. McClelland R, Fenton G, Rutherford W. The postconcussional syndrome revisited. J R Soc Med. 1994;87:508–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Tebano M, Cameroni M, Gallozzi G, Loizzo A, Palazzino G, Pezzini G, Ricci G. EEG spectral analysis after minor head injury in man. Electroencephalogr Clin Neurophysiol. 1988;70(2):185–9.

    Article  CAS  PubMed  Google Scholar 

  17. Montgomery E, Fenton G, McClelland R, MacFlynn G, Rutherford W. The psychobiology of minor head injury. Psychol Med. 1991;21(2):375–84.

    Article  CAS  PubMed  Google Scholar 

  18. Pratar-Chand R, Sinniah M, Salem F. Cognitive evoked potential (P300): a metric for cerebral concussion. Acta Neurol Scand. 1988;78:185–9.

    Article  Google Scholar 

  19. Watson M, Fenton G, McClelland R, Lumsden J, Headley M, Rutherford W. The post-concussional state: neurophysiological aspects. Br J Psychiatry. 1995;167:514–21.

    Article  CAS  PubMed  Google Scholar 

  20. Leon-Carrion J, Martin-Rodriguez J, Damas-Lopez J, Martin J, Dominguez-Morales M. A QEEG index of level of functional dependence for people sustaining acquired brain injury: the Seville Independence Index (SINDI). Brain Inj. 2008;22(1):61–74.

    Article  PubMed  Google Scholar 

  21. Nunez P, Srinivasan R. A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol. 2006;117(11):2424–35.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Whittingstall K, Logothetis N. Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron. 2009;64(2):281–9.

    Article  CAS  PubMed  Google Scholar 

  23. Jasper H. The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol. 1958;10:370–5.

    Article  Google Scholar 

  24. O’Neil B, Prichep L, Naunheim R, Chabot R. Can quantitative brain electrical activity aid in the triage of mild traumatic brain-injured patients? Ann Emerg Med. 2011;58(4):208.

    Article  Google Scholar 

  25. Shaw N. The neurophysiology of concussion. Prog Neurobiol. 2002;67(4):281–344.

    Article  CAS  PubMed  Google Scholar 

  26. Bazanova O, Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev. 2013; (epub ahead of print).

    Google Scholar 

  27. Tallon-Baudry C, Bertrand O, Delpuech C, Permier J. Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci. 1997;17(2):722–34.

    CAS  PubMed  Google Scholar 

  28. Walter W. The living brain. Oxford: W.W. Norton; 1953. p. 311.

    Google Scholar 

  29. Luu P, Tucker D. Regulating action: alternating activation of midline frontal and motor cortical networks. Clin Neurophysiol. 2001;112(7):1295–306.

    Article  CAS  PubMed  Google Scholar 

  30. Schacter D. EEG theta waves and psychological phenomena: a review and analysis. Biol Psychol. 1977;5(1):47–82.

    Article  CAS  PubMed  Google Scholar 

  31. Vogel W, Broverman D, Klaiber E. EEG and mental abilities. Electroencephalogr Clin Neurophysiol. 1968;24:166–75.

    Article  CAS  PubMed  Google Scholar 

  32. Slobounov S, Gay M, Johnson B, Zhang K. Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging Behav. 2012;6(2):224–43.

    Article  PubMed  Google Scholar 

  33. Geets W, de Zegher F. EEG and brainstem abnormalities after cerebral concussion. Short term observations. Acta Neurol Belg. 1985;85(5):277–83.

    CAS  PubMed  Google Scholar 

  34. Nuwer M, Hovda D, Schrader L, Vespa P. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol. 2005;116(9):2001–25.

    Article  PubMed  Google Scholar 

  35. Koufen H, Dichgans J. Frequency and course of posttraumatic EEG-abnormalities and their correlations with clinical symptoms: a systematic follow up study in 344 adults (author’s transl). Fortschr Neurol Psychiatr Grenzgeb. 1978;46(4):165–77.

    CAS  PubMed  Google Scholar 

  36. Jacome D, Risko M. EEG features in post-traumatic syndrome. Clin Electroencephalogr. 1984;15(4):214–21.

    CAS  PubMed  Google Scholar 

  37. Cannon R, Baldwin D, Shaw T, Diloreto D, Phillips S, Scruggs A, Riehl T. Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days. Neurosci Lett. 2012;518:27–31.

    Article  CAS  PubMed  Google Scholar 

  38. Thornton K, Carmody D. Traumatic brain injury rehabilitation: QEEG biofeedback treatment protocols. Appl Psychophysiol Biofeedback. 2009;34(1):59–68.

    Article  PubMed  Google Scholar 

  39. Chen X, Tao L, Chen A. Electroencephalogram and evoked potential parameters examined in Chinese mild head injury patients for forensic medicine. Neurosci Bull. 2006;22:165–70.

    PubMed  Google Scholar 

  40. Coutin-Churchman P, Anez Y, Uzcategui M, Alvarez L, Vergara F, Mendez L, Fleitas R. Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clin Neurophysiol. 2003;114:2294–306.

    Article  CAS  PubMed  Google Scholar 

  41. Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A. Focal cortical dysfunction and blood-brain barrier disruption in patients with postconcussion syndrome. J Clin Neurophysiol. 2005;22:1–9.

    Article  PubMed  Google Scholar 

  42. von Bierbrauer A, Weissenborn K, Hinrichs H, Scholz M, Kunkel H. Automatic (computer-assisted) EEG analysis in comparison with visual EEG analysis in patients following minor cranio-cerebral trauma (a follow-up study). EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb. 1992;23(3):151–7.

    Google Scholar 

  43. Fenton G, McClelland R, Montgomery A, MacFlynn G, Rutherford W. The postconcussional syndrome: social antecedents and psychological sequelae. Br J Psychiatry. 1993;162:493–7.

    Article  CAS  PubMed  Google Scholar 

  44. Fenton G. The postconcussional syndrome reappraised. Clin Electroencephalogr. 1996;22:174–82.

    Google Scholar 

  45. Thatcher R. Maturation of the human frontal lobes: physiological evidence for staging. Dev Neuropsychol. 1991;7(3):397–419.

    Article  Google Scholar 

  46. Thatcher R, North D, Curtin R, Walker R, Biver C, Gomez F, Salazar A. An EEG severity index of traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2001;13(1):77–87.

    Article  CAS  PubMed  Google Scholar 

  47. Thatcher R, Walker R, Gerson I, Geisler F. EEG discriminant analyses of mild head trauma. Electroencephalogr Clin Neurophysiol. 1989;73(2):94–106.

    Article  CAS  PubMed  Google Scholar 

  48. Thornton K. Improvement/rehabilitation of memory functioning with neurotherapy/QEEG biofeedback. J Head Trauma Rehabil. 2000;15(6):1285–96.

    Article  CAS  PubMed  Google Scholar 

  49. Thatcher R, Biver C, McAlaster R, Salazar A. Biophysical linkage between MRI and EEG coherence in closed head injury. Neuroimage. 1998;8(4):307–26.

    Article  CAS  PubMed  Google Scholar 

  50. Barr W, Prichep L, Chabot R, Powell R, McCrea M. Measuring brain electrical activity to track recovery from sport-related concussion. Brain Inj. 2012;26(1):58–66.

    Article  PubMed  Google Scholar 

  51. Thornton K. The electrophysiological effects of a brain injury on auditory memory functioning. The QEEG correlates of impaired memory. Arch Clin Neuropsychol. 2003;18(4):363–78.

    Article  PubMed  Google Scholar 

  52. Corsi-Cabrera M, Solís-Ortiz S, Guevara M. Stability of EEG inter- and intrahemispheric correlation in women. Electroencephalogr Clin Neurophysiol. 1997;102(3):248–55.

    Article  CAS  PubMed  Google Scholar 

  53. Pollock V, Schneider L, Lyness S. Reliability of topographic quantitative EEG amplitude in healthy late-middle-aged and elderly subjects. Electroencephalogr Clin Neurophysiol. 1991;79(1):2026.

    Article  Google Scholar 

  54. Salinsky M, Oken B, Morehead L. Test-retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol. 1991;79(5):382–92.

    Article  CAS  PubMed  Google Scholar 

  55. Harmony T, Fernández T, Rodríguez M, Reyes A, Marosi E, Bernal J. Test-retest reliability of EEG spectral parameters during cognitive tasks: II. Coherence. Int J Neurosci. 1993;68(3–4):263–71.

    Article  CAS  PubMed  Google Scholar 

  56. Nikulin V, Brismar T. Long-range temporal correlations in alpha and beta oscillations: effect of arousal level and test-retest reliability. Clin Neurophysiol. 2004;115(8):1896–908.

    Article  PubMed  Google Scholar 

  57. Slobounov S, Sebastianelli W, Simon R. Neurophysiological and behavioral concomitants of mild brain injury in collegiate athletes. Clin Neurophysiol. 2002;113(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  58. Thompson J, Sebastianelli W, Slobounov S. EEG and postural correlates of mild traumatic brain injury in athletes. Neurosci Lett. 2005;377(3):158–63.

    Article  CAS  PubMed  Google Scholar 

  59. Cao C, Slobounov S. Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):11–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Slobounov S, Sebastianelli W, Moss R. Alteration of posture-related cortical potentials in mild traumatic brain injury. Neurosci Lett. 2005;383(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  61. Slobounov S, Cao C, Sebastianelli W. Differential effect of first versus second concussive episodes on wavelet information quality of EEG. Clin Neurophysiol. 2009;120(5):862–7.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Cao C, Slobounov S. Application of a novel measure of EEG non-stationarity as ‘Shannon-entropy of the peak frequency shifting’ for detecting residual abnormalities in concussed individuals. Clin Neurophysiol. 2011;122(7):1314–21.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Cao C, Tutwiler R, Slobounov S. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE Trans Neural Syst Rehabil Eng. 2008;16(4):327–35.

    Article  PubMed  Google Scholar 

  64. Slobounov S, Sebastianelli W, Newell K. Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1383–6.

    PubMed  Google Scholar 

  65. Slobounov S, Sebastianelli W, Hallett M. Residual brain dysfunction observed one year post-mild traumatic brain injury: combined EEG and balance study. Clin Neurophysiol. 2012;123(9):1755–61.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Broglio S, Pontifex M, O’Connor P, Hillman C. The persistent effects of concussion on neuroelectric indices of attention. J Neurotrauma. 2009;26(9):1463–70.

    Article  PubMed  Google Scholar 

  67. Gosselin N, Thériault M, Leclerc S, Montplaisir J, Lassonde M. Neurophysiological anomalies in symptomatic and asymptomatic concussed athletes. J Neurosurg. 2006;58(6):1151–61.

    Article  Google Scholar 

  68. Thériault M, De Beaumont L, Gosselin N, Filipinni M, Lassonde M. Electrophysiological abnormalities in well functioning multiple concussed athletes. Brain Inj. 2009;23(11):899–906.

    Article  PubMed  Google Scholar 

  69. McCrory P, Johnston K, Meeuwisse W, Aubry M, Cantu R, Dvorak J, Graf-Baumann T, Kelly J, Lovell M, Schamasch P. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Br J Sports Med. 2005;39:196–204.

    CAS  PubMed  Google Scholar 

  70. Cancelliere C, Cassidy D, Côté P, Hincapié C, Hartvigsen J, Carroll L, Marras C, Boyle E, Kristman V, Hung R, Stålnacke BM, Rumney P, Coronado V, Holm L, Borg J, Nygren-de Boussard C, Af Geijerstam JL, Keightley M. Protocol for a systematic review of prognosis after mild traumatic brain injury: an update of the WHO Collaborating Centre Task Force findings. Syst Rev. 2012;1(1):1–17.

    Google Scholar 

  71. McCrory P, Meeuwisse WH, Aubry M, Cantu RC, Dvořák J, Echemendia RJ, Engebretsen L, Johnston K, Kutcher JS, Raftery M, Sills A, Benson BW, Davis GA, Ellenbogen R, Guskiewicz KM, Herring SA, Iverson GL, Jordan BD, Kissick J, McCrea M, McIntosh AS, Maddocks D, Makdissi M, Purcell L, Putukian M, Schneider K, Tator CH, Turner M. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport, Zurich, November 2012. J Athl Train. 2013;48(4):554–75.

    Article  PubMed  Google Scholar 

  72. Alla S, Sullivan J, McCrory P. Defining asymptomatic status following sports concussion: fact or fallacy? Br J Sports Med. 2012;46(8):562–9.

    Article  PubMed  Google Scholar 

  73. Ward A. The physiology of concussion. Clin Neurosurg. 1966;12:95–111.

    Google Scholar 

  74. Echlin F. Spreading depression of electrical activity in the cerebral cortex following local trauma and its possible role in concussion. Arch Neurol Psychiatry. 1950;63(5):830–2.

    CAS  PubMed  Google Scholar 

  75. West M, Parkinson D, Havlicck V. Spectral analysis of the electroencephalographic response to experimental concussion in the rat. Electroencephalogr Clin Neurophysiol. 1982;53:192–200.

    Article  CAS  PubMed  Google Scholar 

  76. McCrea M, Prichep L, Powell M, Chabot R, Barr W. Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. J Head Trauma Rehabil. 2010;25(4):283–92.

    Article  PubMed  Google Scholar 

  77. Zhang K, Johnson B, Gay M, Horovitz S, Hallett M, Sebastianelli W, Slobounov S. Default mode network in concussed individuals in response to YMCA physical stress test. J Neurotrauma. 2012;29(5):756–65.

    Article  PubMed  Google Scholar 

  78. Len T, Neary JP. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging. 2011;31:85–93.

    CAS  PubMed  Google Scholar 

  79. Len T, Neary JP, Asmundson GJ, Goodman D, Bjornson B, Bhambhanis YN. Cerebrovascular reactivity impairment after sport-induced concussion. Med Sci Sports Exerc. 2011;43(12):2241–8.

    Article  PubMed  Google Scholar 

  80. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, Ria A, Marziale S, Zoccatelli G, Tavazzi B, Del Bolgia F, Sorge R, Broglio SP, McIntosh TK, Lazzarino G. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–42.

    Article  PubMed  Google Scholar 

  81. Nagata K. Metabolic and hemodynamic correlates of quantitative EEG mapping. Electroencephalogr Clin Neurophysiol. 1995;97(4):S49.

    Article  Google Scholar 

  82. Bates A, Kiehl K, Laurens K, Liddle P. Low-frequency EEG oscillations associated with information processing in schizophrenia. Schizophr Res. 2009;115:222–30.

    Article  PubMed  Google Scholar 

  83. Babiloni C, Ferri R, Binetti G, Vecchio F, Frisoni G, Lanuzza B, Miniussi C, Nobili F, Rodriguez G, Rundo F, Cassarino A, Infarinato F, Cassetta E, Salinari S, Eusebi F, Rossini P. Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiol Aging. 2009;30:93–102.

    Article  PubMed  Google Scholar 

  84. Korb A, Cook I, Hunter A, Leuchter A. Brain electrical source differences between depressed subjects and healthy controls. Brain Topogr. 2008;21:138–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon M. Slobounov Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ray, W.J., Teel, E.F., Gay, M.R., Slobounov, S.M. (2014). Feasibility of Electroencephalography for Direct Assessment of Concussion. In: Slobounov, S., Sebastianelli, W. (eds) Concussions in Athletics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0295-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0295-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0294-1

  • Online ISBN: 978-1-4939-0295-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics