Skip to main content

Introduction

  • Chapter
  • First Online:
Concussions in Athletics

Abstract

Concussion in athletics is a growing public health concern with increased attention being focused on treatment and management of this puzzling epidemic. A critical decision confronting health care practitioners is to determine the proper and safest time frame when clearing athletes to resume participation, as premature return-to-play after concussion may put injured athletes at high risk for recurrent and more severe brain injuries. Despite the increasing occurrence and prevalence of concussions in athletics, there is no universally accepted definition or “gold standard” for its assessment. Conventional brain imaging techniques lack the sensitivity to detect the subtle structural changes. Clinical management of sports-induced concussions has not changed much over the past decade. Advances in neuroimaging that include electroencephalography, functional magnetic resonance imaging, diffusion tensor imaging, and magnetic resonance spectroscopy offer the opportunity in developing research leading to a better understanding of the complexities and nuances of concussions. This may ultimately influence the clinical management of the injury and provide more accurate guidelines for return to sport participation. In this introductory chapter the authors review the major findings from advanced neuroimaging methods along with current controversy within the field of concussion research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langlois JA, Rutland-Brown W, Wald MM. The epidemiology and impact of traumatic brain injury, a brief overview. J Head Trauma Rehabil. 2006;21:375–8.

    PubMed  Google Scholar 

  2. Ruff RM. Mild traumatic brain injury and neural recovery, rethinking the debate. Neurorehabilitation. 2011;28:167–80.

    PubMed  Google Scholar 

  3. Lincoln AE, Caswell SV, Almquist JL, Dunn RE, Norris JB, Hinton RY. Trends in concussion incidence in high school sports, a prospective 11-year study. Am J Sports Med. 2011;39:958–63.

    PubMed  Google Scholar 

  4. Cantu RC, Aubry M, Dvorak J, Graf-Baumann T, Johnston K, Kelly J, et al. Overview of concussion consensus statements since 2000. Neurosurg Focus. 2006;21:E3.

    PubMed  Google Scholar 

  5. Anderson T, Heitger M, Macleod AD. Concussion and mild head injury. Pract Neurol. 2006;6:342–57.

    Google Scholar 

  6. Canadian Academy of Sport Medicine Concussion Committee (CAoSMC C). CASM guidelines for assessment and management of sport-related concussion. Clin J Sport Med. 2000;10:209–11.

    Google Scholar 

  7. Aubry M, Cantu R, Dvorak J, Graf-Baumann T, Johnston K, Kelly J, et al. Summary and agreement statement of the 1st international conference on concussion in sport, Vienna 2001. Recommendations for the improvement of safety and health of athletes who may suffer concussive injuries. Br J Sports Med. 2002;36:6–10.

    CAS  PubMed  Google Scholar 

  8. Hugenholtz H, Richard MT. Return to athletic competition following concussion. Can Med Assoc J. 1982;127:827–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Alves WM, Rimel RW, Nelson WE. University of Virginia prospective study of football induced minor head injury—status report. Clin Sports Med. 1987;6:211–8.

    CAS  PubMed  Google Scholar 

  10. Barth J, Alves W, Ryan T, Macciocchi S, Rimel R, Jane J, et al. Mild head injury in sport, neuropsychological sequelae and recovery of function. In: Levin H, Eisenberg H, Benton A, editors. Mild head injury. New York: Oxford Press; 1989.

    Google Scholar 

  11. Moser RS, Iverson GL, Echemendia RJ, Lovell MR, Schatz P, Webbe FM, et al. Neuropsychological evaluation in the diagnosis and management of sports-related concussion. Arch Clin Neuropsychol. 2007;22:909–91.

    PubMed  Google Scholar 

  12. McCrory P, Meeuwisse W, Johnston K, Dvorak J, Aubry M, Molloy M, et al. Consensus statement on concussion in sport 3rd international conference on concussion in sport held in Zurich, November 2008. Clin J Sport Med. 2008;19:185–200.

    Google Scholar 

  13. Bazarian JJ, Veenema T, Brayer AF, Lee E. Knowledge of concussion guidelines among practitioners caring for children. Clin Pediatr. 2001;40:207–12.

    CAS  Google Scholar 

  14. Chrisman SP, Schiff MA, Rivara FP. Physician concussion knowledge and the effect of mailing the CDC’s “heads up” toolkit. Clin Pediatr. 2011;50:1031–9.

    Google Scholar 

  15. McCrea M, Prichep L, Powell MR, Chabot R, Barr WB. Acute effects and recovery after sport-related concussion, a neurocognitive and quantitative brain electrical activity study. J Head Trauma Rehabil. 2010;25:283–92.

    PubMed  Google Scholar 

  16. Giza CC, Hovda DA. The neurometabolic cascade of concussion. J Athl Train. 2001;36:228–35.

    PubMed Central  PubMed  Google Scholar 

  17. Barkhoudarian G, Hovda DA, Giza CC. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30:33–48.

    PubMed  Google Scholar 

  18. Kan EM, Ling EA, Lu J. Microenvironment changes in mild traumatic brain injury. Brain Res Bull. 2012;87:359–72.

    PubMed  Google Scholar 

  19. Goetz P, Blamire A, Rajagopalan B, Cadoux-Hudson T, Young D, Styles P. Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity. J Neurotrauma. 2004;21:645–54.

    PubMed  Google Scholar 

  20. Browne KD, Chen XH, Meaney DF, Smith DH. Mild traumatic brain injury and diffuse axonal injury in swine. J Neurotrauma. 2011;28:1747–55.

    PubMed  Google Scholar 

  21. Yuen TJ, Browne KD, Iwata A, Smith DH. Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. J Neurosci Res. 2009;87:3620–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Flamm ES, Ommaya AK, Coe J, Krueger TP, Faas FH. Cardiovascular effects of experimental head injury in the monkey. Surg Forum. 1966;17:414–6.

    CAS  PubMed  Google Scholar 

  23. Grundl PD, Biagas KV, Kochanek PM, Schiding JK, Barmada MA, Nemoto EM. Early cerebrovascular response to head injury in immature and mature rats. J Neurotrauma. 1994;11:135–48.

    CAS  PubMed  Google Scholar 

  24. Lewine JD, Davis JT, Bigler ED, Thoma R, Hill D, Funke M, et al. Objective documentation of traumatic brain injury subsequent to mild head trauma, multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil. 2007;22:141–55.

    PubMed  Google Scholar 

  25. Chason JL, Hardy WG, Webster JE, Gurdjian ES. Alterations in cell structure of the brain associated with experimental concussion. J Neurosurg. 1958;15:135–9.

    CAS  PubMed  Google Scholar 

  26. Nevin NC. Neuropathological changes in the white matter following head injury. J Neuropathol Exp Neurol. 1967;26:77–84.

    CAS  PubMed  Google Scholar 

  27. Faas FH, Ommaya AK. Brain tissue electrolytes and water content in experimental concussion in the monkey. J Neurosurg. 1968;28:137–44.

    CAS  PubMed  Google Scholar 

  28. Glaser MA, Sjaardema H. The value of the electroencephalograph in cranio-cerebral injuries. West Surg. 1940;48:6989–96.

    Google Scholar 

  29. Jasper HH, Kershman J, Elvidge AR. Electroencephalographic study in clinical cases of injury of the head. Arch Neurol Psychiatry. 1940;44:328–50.

    Google Scholar 

  30. Williams D. The electro-encephalogram in acute head injury. J Neurol Psychiatry. 1941;4:107–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Arciniegas DB. Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. Int J Psychophysiol. 2011;82:41–52.

    PubMed  Google Scholar 

  32. Geets W, Louette N. Early EEG in 300 cerebral concussions. Rev Electroencephalogr Neurophysiol Clin. 1985;14:333–8.

    CAS  PubMed  Google Scholar 

  33. McClelland RJ, Fenton GW, Rutherford W. The postconcussional-syndrome revisited. J R Soc Med. 1994;87:508–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Tebano MT, Cameroni M, Gallozzi G, Loizzo A, Palazzino G, Pezzini G, et al. EEG spectral-analysis after minor head-injury in man. Electroencephalogr Clin Neurophysiol. 1988;70:185–9.

    CAS  PubMed  Google Scholar 

  35. Montgomery EA, Fenton GW, McClelland RJ, Macflynn G, Rutherford WH. The psychobiology of minor head-injury. Psychol Med. 1991;21:375–84.

    CAS  PubMed  Google Scholar 

  36. Pratapchand R, Sinniah M, Salem FA. Cognitive evoked-potential P300—a metric for cerebral concussion. Acta Neurol Scand. 1988;78:185–9.

    CAS  Google Scholar 

  37. Watson MR, Fenton GW, McClelland RJ, Lumsden J, Headley M, Rutherford WH. The post-concussional state—neurophysiological aspects. Br J Psychiatry. 1995;167:514–21.

    CAS  PubMed  Google Scholar 

  38. Thatcher RW, Walker RA, Gerson I, Geisler FH. EEG discriminant analyses of mild head trauma. Electroencephalogr Clin Neurophysiol. 1989;73:94–106.

    CAS  PubMed  Google Scholar 

  39. Thornton KE. Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32–64 Hz). Brain Inj. 1999;13:477–88.

    CAS  PubMed  Google Scholar 

  40. Duff J. The usefulness of quantitative EEG (QEEG) and neurotherapy in the assessment and treatment of post-concussion syndrome. Clin EEG Neurosci. 2004;35:198–209.

    PubMed  Google Scholar 

  41. Gosselin N, Theriault M, Leclerc S, Montplaisir J, Lassonde M. Neurophysiological anomalies in symptomatic and asymptomatic concussed athletes. Neurosurgery. 2006;58:1151–60.

    PubMed  Google Scholar 

  42. Broglio SP, Pontifex MB, O’Connor P, Hillman CH. The persistent effects of concussion on neuroelectric indices of attention. J Neurotrauma. 2009;26:1463–70.

    PubMed  Google Scholar 

  43. Davis GA, Iverson GL, Guskiewicz KM, Ptito A, Johnston KM. Contributions of neuroimaging, balance testing, electrophysiology and blood markers to the assessment of sport-related concussion. Br J Sports Med. 2009;43(1):136–45.

    Google Scholar 

  44. Theriault M, De Beaumont L, Gosselin N, Filipinni M, Lassonde M. Electrophysiological abnormalities in well functioning multiple concussed athletes. Brain Inj. 2009;23:899–906.

    PubMed  Google Scholar 

  45. Slobounov S, Cao C, Sebastianelli W. Differential effect of first versus second concussive episodes on wavelet information quality of EEG. Clin Neurophysiol. 2009;120:862–7.

    PubMed Central  PubMed  Google Scholar 

  46. Cao C, Slobounov S. Application of a novel measure of EEG non-stationarity as ‘Shannon—entropy of the peak frequency shifting’ for detecting residual abnormalities in concussed individuals. Clin Neurophysiol. 2011;122:1314–21.

    PubMed Central  PubMed  Google Scholar 

  47. Cao C, Tutwiler RL, Slobounov S. Automatic classification of athletes with residual functional deficits following concussion by means of EEG signal using support vector machine. IEEE Trans Neural Syst Rehabil Eng. 2008;16:327–35.

    PubMed  Google Scholar 

  48. Cao C, Slobounov S. Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals. IEEE Trans Neural Syst Rehabil Eng. 2010;18:11–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Slobounov S, Sebastianelli W, Moss R. Alteration of posture-related cortical potentials in mild traumatic brain injury. Neurosci Lett. 2005;383:251–5.

    CAS  PubMed  Google Scholar 

  50. Slobounov S, Sebastianelli W, Newell KM. Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1383–6.

    PubMed  Google Scholar 

  51. Slobounov S, Slobounov E, Newell K. Application of virtual reality graphics in assessment of concussion. Cyberpsychol Behav. 2006;9:188–91.

    PubMed  Google Scholar 

  52. Slobounov S, Tutwiler R, Sebastianelli W, Slobounov E. Alteration of postural responses to visual field motion in mild traumatic brain injury. Neurosurgery. 2006;59:134–9.

    PubMed  Google Scholar 

  53. Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol. 2005;116:2001–25.

    PubMed  Google Scholar 

  54. Slobounov S, Sebastianelli W, Hallett M. Residual brain dysfunction observed one year post-mild traumatic brain injury, combined EEG and balance study. Clin Neurophysiol. 2012;123(9):1755–61.

    PubMed Central  PubMed  Google Scholar 

  55. Logothetis NK. What we can do and what we cannot do with fMRI. Nature. 2008;453(7197):869–78.

    CAS  PubMed  Google Scholar 

  56. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Horowitz AL. MRI physics for radiologist, a visual approach. 3rd ed. New York: Springer; 1995.

    Google Scholar 

  59. Hillary FG, Steffener J, Biswal BB, Lange G, DeLuca J, Ashburner J. Functional magnetic resonance imaging technology and traumatic brain injury rehabilitation, guidelines for methodological and conceptual pitfalls. J Head Trauma Rehabil. 2002;17:411–30.

    PubMed  Google Scholar 

  60. Jueptner M, Weiller C. Does measurement of regional cerebral blood flow reflect synaptic activity?—implications for PET and fMRI. Neuroimage. 1995;2:148–56.

    CAS  PubMed  Google Scholar 

  61. Ptito A, Chen JK, Johnston KM. Contributions of functional magnetic resonance imaging (fMRI) to support concussion evaluation. Neurorehabilitation. 2007;22:217–27.

    PubMed  Google Scholar 

  62. McAllister TW, Saykin AJ, Flashman LA, Sparling MB, Johnson SC, Guerin SJ, et al. Brain activation during working memory 1 month after mild traumatic brain injury, a functional MRI study. Neurology. 1999;53:1300–8.

    CAS  PubMed  Google Scholar 

  63. McAllister TW, Sparling MB, Flashman LA, Guerin SJ, Mamourian AC, Saykin AJ. Differential working memory load effects after mild traumatic brain injury. Neuroimage. 2001;14:1004–12.

    CAS  PubMed  Google Scholar 

  64. McAllister TW, Flashman LA, McDonald BC, Saykin AJ. Mechanisms of working memory dysfunction after mild and moderate TBI, evidence from functional MRI and neurogenetics. J Neurotrauma. 2006;23:1450–67.

    PubMed  Google Scholar 

  65. Jantzen KJ. Functional magnetic resonance imaging of mild traumatic brain injury. J Head Trauma Rehabil. 2010;25:256–66.

    PubMed  Google Scholar 

  66. Hillary FG, Schultheis MT, Challis BH, Millis SR, Carnevale GJ, Galshi T, et al. Spacing of repetitions improves learning and memory after moderate and severe TBI. J Clin Exp Neuropsychol. 2003;25:49–58.

    CAS  PubMed  Google Scholar 

  67. Chen JK, Johnston KM, Frey S, Petrides M, Worsley K, Ptito A. Functional abnormalities in symptomatic concussed athletes, an fMRI study. Neuroimage. 2004;22:68–82.

    PubMed  Google Scholar 

  68. Perlstein WM, Cole MA, Demery JA, Seignourel PJ, Dixit NK, Larson MJ, et al. Parametric manipulation of working memory load in traumatic brain injury, behavioral and neural correlates. J Int Neuropsychol Soc. 2004;10:724–41.

    PubMed  Google Scholar 

  69. Chiaravalloti N, Hillary F, Ricker J, Christodoulou C, Kalnin A, Liu WC, Steffener J, DeLuca J. Cerebral activation patterns during working memory performance in multiple sclerosis using fMRI. J Clin Exp Neuropsychol. 2005;27:33–54.

    PubMed  Google Scholar 

  70. Chen JK, Johnston KM, Collie A, McCrory P, Ptito A. A validation of the post concussion symptom scale in the assessment of complex concussion using cognitive testing and functional MRI. J Neurol Neurosurg Psychiatry. 2007;78:1231–8.

    PubMed  Google Scholar 

  71. Chen JK, Johnston KM, Petrides M, Ptito A. Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch Gen Psychiatry. 2008;65:81–9.

    PubMed  Google Scholar 

  72. Mayer AR, Mannell MV, Ling J, Elgie R, Gasparovic C, Phillips JP, et al. Auditory orienting and inhibition of return in mild traumatic brain injury, a FMRI study. Hum Brain Mapp. 2009;30:4152–66.

    PubMed Central  PubMed  Google Scholar 

  73. Stulemeijer M, Vos PE, van der Werf S, van Dijk G, Rijpkema M, Fernandez G. How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. J Neurotrauma. 2010;27:1585–95.

    PubMed  Google Scholar 

  74. Slobounov S, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury, a functional MRI study. Exp Brain Res. 2010;202:341–54.

    PubMed Central  PubMed  Google Scholar 

  75. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb, phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.

    CAS  PubMed  Google Scholar 

  76. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol. 2007;118:2317–31.

    PubMed  Google Scholar 

  77. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–41.

    CAS  PubMed  Google Scholar 

  78. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009;106:13040–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.

    CAS  PubMed  Google Scholar 

  80. Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci. 2006;29:449–76.

    CAS  PubMed  Google Scholar 

  81. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. 2010;4:19.

    PubMed Central  PubMed  Google Scholar 

  82. Nakamura T, Hillary FG, Biswal BB. Resting network plasticity following brain injury. PLoS One. 2009;4(12):e8220.

    PubMed Central  PubMed  Google Scholar 

  83. de la Plata CDM, Garces J, Kojori ES, Grinnan J, Krishnan K, Pidikiti R, Spence J, Devous MD, Moore C, McColl R, Madden C, Diaz-Arrastia R. Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Arch Neurol. 2011;68:74–84.

    Google Scholar 

  84. Slobounov S, Gay M, Zhang K, Johnson B, Pennell D, Sebastianelli W, et al. Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes, RsFMRI study. Neuroimage. 2011;55:1716–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain, a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Sporns O, Honey CJ, Kotter R. Identification and classification of hubs in brain networks. PLoS One. 2007;2:e1049.

    PubMed Central  PubMed  Google Scholar 

  87. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders, a systematic review. Neurosci Biobehav Rev. 2009;33:279–96.

    PubMed  Google Scholar 

  88. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005;360:1001–13.

    PubMed  Google Scholar 

  90. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103:13848–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. De Luca M, Beckmann CF, De Stefano N, Matthews PM, Smith SM. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 2006;29:1359–67.

    PubMed  Google Scholar 

  92. Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32:1825–35.

    PubMed Central  PubMed  Google Scholar 

  93. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, et al. Alteration of brain default network in subacute phase of injury in concussed individuals, resting-state fMRI study. Neuroimage. 2012;59:511–8.

    PubMed Central  PubMed  Google Scholar 

  94. Zhang K, Johnson B, Gay M, Horovitz SG, Hallett M, Sebastianelli W, et al. Default mode network in concussed individuals in response to the YMCA physical stress test. J Neurotrauma. 2012;29:756–65.

    PubMed  Google Scholar 

  95. Le Bihan D. Diffusion tensor imaging, concepts and applications. J Magn Reson Imaging. 2001;13:534–46.

    PubMed  Google Scholar 

  96. Snook L. Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage. 2005;26:1164.

    PubMed  Google Scholar 

  97. Sharp DJ, Ham TE. Investigating white matter injury after mild traumatic brain injury. Curr Opin Neurol. 2011;24(6):558–63.

    PubMed  Google Scholar 

  98. Wilde EA, Merkley TL, Bigler ED, Max JE, Schmidt AT, Ayoub KW, et al. Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. Int J Dev Neurosci. 2012;30:267–76.

    PubMed Central  PubMed  Google Scholar 

  99. Shah S, Yallampalli R, Merkley TL, McCauley SR, Bigler ED, Macleod M, et al. Diffusion tensor imaging and volumetric analysis of the ventral striatum in adults with traumatic brain injury. Brain Inj. 2012;26:201–10.

    PubMed  Google Scholar 

  100. Zhu T, Hu R, Qiu X, Taylor M, Tso Y, Yiannoutsos C, et al. Quantification of accuracy and precision of multi-center DTI measurements, a diffusion phantom and human brain study. Neuroimage. 2011;56:1398–411.

    PubMed Central  PubMed  Google Scholar 

  101. Bazarian JJ, Zhong J, Blyth B, Zhu T, Kavcic V, Peterson D. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury, a pilot study. J Neurotrauma. 2007;24:1447–59.

    PubMed  Google Scholar 

  102. Bazarian JJ, Zhu T, Blyth B, Borrino A, Zhong J. Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn Reson Imaging. 2012;30:171–80.

    PubMed Central  PubMed  Google Scholar 

  103. Wilde EA, McCauley SR, Hunter JV, Bigler ED, Chu Z, Wang ZJ, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70:948–55.

    CAS  PubMed  Google Scholar 

  104. Chu Z, Wilde EA, Hunter JV, McCauley SR, Bigler ED, Troyanskaya M, Yallampalli R, Chia JM, Levin HS. Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. AJNR Am J Neuroradiol. 2009;31:340–6.

    PubMed  Google Scholar 

  105. Zhang K, Johnson B, Pennell D, Ray W, Sebastianelli W, Slobounov S. Are functional deficits in concussed individuals consistent with white matter structural alterations, combined FMRI & DTI study. Exp Brain Res. 2010;204:57–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Cubon VA, Putukian M, Boyer C, Dettwiler A. A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. J Neurotrauma. 2011;28:189–201.

    PubMed  Google Scholar 

  107. Henry LC, Tremblay J, Tremblay S, Lepore N, Theoret H, Ellemberg D, et al. Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma. 2011;28(10):2049–59.

    PubMed  Google Scholar 

  108. Maugans TA, Farley C, Altaye M, Leach J, Cecil KM. Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics. 2012;129:28–37.

    PubMed  Google Scholar 

  109. Neil J, Miller J, Mukherjee P, Hüppi PS. Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed. 2002;15:543–52.

    CAS  PubMed  Google Scholar 

  110. Shekdar K. Role of magnetic resonance spectroscopy in evaluation of congenital/developmental brain abnormalities. Semin Ultrasound CT MR. 2011;32:510–38.

    PubMed  Google Scholar 

  111. Cecil KM. Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998;88:795–801.

    CAS  PubMed  Google Scholar 

  112. Belanger HG. Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2007;19:5–20.

    PubMed  Google Scholar 

  113. Govind V. Whole-brain proton MR spectroscopic imaging of mild-to moderate traumatic brain injury and correlation with neuropsychological deficits. J Neurotrauma. 2010;27:483–96.

    PubMed  Google Scholar 

  114. Gasparovic C, Yeo R, Mannell M, Ling J, Elgie R, Phillips J, et al. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury, a 1H-magnetic resonance spectroscopy study. J Neurotrauma. 2009;26(10):1635–43.

    PubMed  Google Scholar 

  115. Ross BD. 1H MRS in acute traumatic brain injury. J Magn Reson Imaging. 1998;8:829–40.

    CAS  PubMed  Google Scholar 

  116. Signoretti S, Pietro V, Vagnozzi R, Lazzarino G, Amorini AM, Belli A, et al. Transient alterations of creatine, creatine phosphate, N-acetylaspartate and high-energy phosphates after mild traumatic brain injury in the rat. Mol Cell Biochem. 2009;333:269–77.

    PubMed  Google Scholar 

  117. Vagnozzi R, Signoretti S, Cristofori L, Alessandrini F, Floris R, Isgro E, et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury, a multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–42.

    PubMed  Google Scholar 

  118. Walz NC. Late proton magnetic resonance spectroscopy following traumatic brain injury during early childhood, relationship with neurobehavioral outcomes. J Neurotrauma. 2008;25:94–103.

    PubMed  Google Scholar 

  119. Johnson B, Zhang K, Gay M, Horovitz S, Hallett M, Sebastianelli W, et al. Metabolic alterations in corpus callosum may compromise brain functional connectivity in MTBI patients, an 1H-MRS study. Neurosci Lett. 2012;509:5–8.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semyon M. Slobounov Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slobounov, S.M., Sebastianelli, W.J. (2014). Introduction. In: Slobounov, S., Sebastianelli, W. (eds) Concussions in Athletics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0295-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0295-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0294-1

  • Online ISBN: 978-1-4939-0295-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics