Advertisement

Integrins: Implications for Aging in Heart Failure Therapy

  • Laura L. Daniel
  • William L. Joyner
  • Mahipal Singh
  • Krishna SinghEmail author
Chapter

Abstract

Integrins are a large family of heterodimeric transmembrane receptors that attach cells to extracellular matrix proteins of the basement membrane. They are bidirectional signaling molecules composed of noncovalently associated α and β subunits. They can form over 24 pairs in mammalian cells creating a wide range of ligand specificity for binding to different components of the extracellular matrix. Integrin expression changes depending on the type of cell, its developmental stage, or the pathological status. There is also an age-associated change in integrin expression which may, at least in part, be responsible for the high prevalence of age-associated disorders. The focus of this chapter is to discuss (1) general structure and function of integrins, (2) expression of integrins in the heart, (3) change in the expression of integrins in the heart during aging, (4) their role in regulation of the remodeling process of the heart, and (5) their therapeutic potential for treatment of heart failure.

Keywords

Focal Adhesion Kinase Cardiac Myocytes Cardiac Fibroblast Integrin Expression Integrin Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is supported by the National Institutes of Health (Grant numbers HL-091405 and HL-092459 to KS) and a Merit Review award (number BX000640 to KS) from the Biomedical Laboratory Research and Development Service of the VA Office of Research and Development.

References

  1. 1.
    Hynes R. Integrins: a family of cell surface receptors. Cell. 1987;48:549–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Lowell C, Mayadas T. Overview: studying integrins in vivo. Methods Mol Biol. 2012;757:369–97.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ross R, Borg T. Integrins and the myocardium. Circ Res. 2001;88:1112–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Hynes R. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87.PubMedCrossRefGoogle Scholar
  5. 5.
    Humphries M. Integrin structure. Biochem Soc Trans. 2000;28:311–39.PubMedCrossRefGoogle Scholar
  6. 6.
    Campbell I, Humphries M. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol. 2011;3:a004994.PubMedCrossRefGoogle Scholar
  7. 7.
    Meighan C, Schwarzbauer J. Temporal and spatial regulation of integrins during development. Curr Opin Cell Biol. 2008;20:520–4.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wu M, Fannin J, Rice K, Wang B, Blough E. Effect of aging on cellular mechanotransduction. Ageing Res Rev. 2011;10:1–15.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Zamir E, Geiger B. Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci. 2001;114:3583–90.PubMedGoogle Scholar
  10. 10.
    Wozniak M, Modzelewska K, Kwong L, Keely P. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692:103–19.PubMedCrossRefGoogle Scholar
  11. 11.
    Galbraith C, Yamada K, Sheetz M. The relationship between force and focal complex development. J Cell Biol. 2002;159:695–705.PubMedCrossRefGoogle Scholar
  12. 12.
    DePasquale J, Izzard C. Accumulation of talin in nodes at the edge of the lamellipodium and separate incorporation into adhesion plaques at focal contacts in fibroblasts. J Cell Biol. 1991;113:1351–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Laudanna C, Kim J, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines. Immunol Rev. 2002;186:37–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Calderwood D. Talin controls integrin activation. Biochem Soc Trans. 2004;32:434–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Ross R. Molecular and mechanical synergy: cross-talk between integrins and growth factor receptors. Cardiovasc Res. 2004;63:381–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Munger J, Sheppard D. Cross talk among TGF-Beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol. 2011;3:a005017.PubMedCrossRefGoogle Scholar
  17. 17.
    Nagai T, Laser M, Baicu C, Zile M, Cooper G, Kuppuswamy D. Beta3-integrin-mediated focal adhesion complex formation: adult cardiocytes embedded in three-dimensional polymer matrices. Am J Cardiol. 1999;83:38H–43.PubMedCrossRefGoogle Scholar
  18. 18.
    van der Flier A, Kuikman I, Baudoin C, van der Neut R, Sonnenberg A. A novel beta 1 integrin isoform produced by alternative splicing: unique expression in cardiac and skeletal muscle. FEBS Lett. 1995;369:340–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhidkova N, Belkin A, Mayne R. Novel isoform of beta 1 integrin expressed in skeletal and cardiac muscle. Biochem Biophys Res Commun. 1995;214:279–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Ross R, Pham C, Shai S, Goldhaber J, Fenczik C, Glembotski C, Ginsberg M, Loftus J. Beta1 integrins participate in the hypertrophic response of rat ventricular myocytes. Circ Res. 1998;82:1160–72.PubMedCrossRefGoogle Scholar
  21. 21.
    MacKenna D, Summerour S, Villarreal F. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 2000;46:257–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Harston R, Kuppuswamy D. Integrins are the necessary links to hypertrophic growth in cardiomyocytes. J Signal Transduct. 2011;2011:521742.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Katsumi A, Orr A, Tzima E, Schwartz M. Integrins in mechanotransduction. J Biol Chem. 2004;279:12001–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Edgley A, Krum H, Kelly D. Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc Ther. 2012;30:e30–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Dabiri B, Lee H, Parker K. A potential role for integrin signaling in mechanoelectrical feedback progress in biophysics and molecular biology. Prog Biophys Mol Biol. 2012;110(2–3):196–203.PubMedCrossRefGoogle Scholar
  26. 26.
    Burgess M, McCrea J, Hedrick H. Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev. 2001;122:1739–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Sottile J, Hocking D. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell. 2002;13:3546–59.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Mamuya W, Chobanian A, Brecher P. Age-related changes in fibronectin expression in spontaneously hypertensive, Wistar-Kyoto, and Wistar rat hearts. Circ Res. 1992;71:1341–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilson CG, Stone JW, Fowlkes V, Morales MO, Murphy CJ, Baxter SC, Goldsmith EC. Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. Microsc Microanal. 2011;17:555–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Communal C, Huq F, Lebeche D, Mestel C, Gwathmey J, Hajjar R. Decreased efficiency of adenovirus-mediated gene transfer in aging cardiomyocytes. Circulation. 2003;107:1170–5.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.PubMedGoogle Scholar
  32. 32.
    Shih H, Lee B, Lee R, Boyle A. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol. 2011;57:9–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Sun M, Opavsky M, Stewart D, Rabinovitch M, Dawood F, Wen W-H, Liu P. Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation. 2003;107:1046–52.PubMedCrossRefGoogle Scholar
  34. 34.
    Nawata J, Ohno I, Isoyama S, Suzuki J, Miura S, Ikeda J, Shirato K. Differential expression of alpha 1, alpha 3 and alpha 5 integrin subunits in acute and chronic stages of myocardial infarction in rats. Cardiovasc Res. 1999;43:371–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Bujak M, Kweon H, Chatila K, Li N, Taffet G, Frangogiannis N. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol. 2008;51:1384–92.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Bujak M, Frangogiannis N. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74:184–95.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Burns J, Issekutz T, Yagita H, Issekutz A. The alpha 4 beta 1 (very late antigen (VLA)-4, CD49d/CD29) and alpha 5 beta 1 (VLA-5, CD49e/CD29) integrins mediate beta 2 (CD11/CD18) integrin-independent neutrophil recruitment to endotoxin-induced lung inflammation. J Immunol. 2001;166:4644–9.PubMedGoogle Scholar
  38. 38.
    Pfister R, Acksteiner C, Baumgarth J, Burst V, Geissler H, Margulies K, Houser S, Bloch W, Flesch M. Loss of beta1D-integrin function in human ischemic cardiomyopathy. Basic Res Cardiol. 2007;102:257–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Shai S-Y, Harpf A, Babbitt C, Jordan M, Fishbein M, Chen J, Omura M, Leil T, Becker K, Jiang M, Smith D, Cherry S, Loftus J, Ross R. Cardiac myocyte-specific excision of the beta1 integrin gene results in myocardial fibrosis and cardiac failure. Circ Res. 2002;90:458–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Krishnamurthy P, Subramanian V, Singh M, Singh K. Deficiency of beta1 integrins results in increased myocardial dysfunction after myocardial infarction. Heart (British Cardiac Society). 2006;92:1309–15.CrossRefGoogle Scholar
  41. 41.
    Calderwood D. Integrin activation. J Cell Sci. 2004;117:657–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Ding B, Price R, Goldsmith E, Borg T, Yan X, Douglas P, Weinberg E, Bartunek J, Thielen T, Didenko V, Lorell B. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation. 2000;101:2854–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Hooper N, Karran E, Turner A. Membrane protein secretases. Biochem J. 1997;321(Pt 2):265–79.PubMedGoogle Scholar
  44. 44.
    Manso A, Elsherif L, Kang S-M, Ross R. Integrins, membrane-type matrix metalloproteinases and ADAMs: potential implications for cardiac remodeling. Cardiovasc Res. 2006;69:574–84.PubMedCrossRefGoogle Scholar
  45. 45.
    Eckhouse S, Spinale F. Changes in the myocardial interstitium and contribution to the progression of heart failure. Heart Fail Clin. 2012;8:7–20.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Li J, Du W, Jiang S, Tian H. Expression of ADAM-15 in rat myocardial infarction. Int J Exp Pathol. 2009;90:347–54.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Olivetti G, Melissari M, Capasso J, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68:1560–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Goldsmith E, Carver W, McFadden A, Goldsmith J, Price R, Sussman M, Lorell B, Cooper G, Borg T. Integrin shedding as a mechanism of cellular adaptation during cardiac growth. Am J Physiol Heart Circ Physiol. 2003;284:H2227–34.PubMedGoogle Scholar
  49. 49.
    Menon B, Krishnamurthy P, Kaverina E, Johnson J, Ross R, Singh M, Singh K. Expression of the cytoplasmic domain of beta1 integrin induces apoptosis in adult rat ventricular myocytes (ARVM) via the involvement of caspase-8 and mitochondrial death pathway. Basic Res Cardiol. 2006;101:485–93.PubMedCrossRefGoogle Scholar
  50. 50.
    van Empel V, Bertrand A, Hofstra L, Crijns H, Doevendans P, De Windt L. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Chen L, Knowlton AA. Mitochondrial dynamics in heart failure. Congest Heart Fail. 2011;17:257–61.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Sheydina A, Riordon DR, Boheler KR. Molecular mechanisms of cardiomyocyte aging. Clin Sci (Lond). 2011;121:315–29.CrossRefGoogle Scholar
  53. 53.
    Hasking G, Esler M, Jennings G, Burton D, Johns J, Korner P. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Karlsberg R, Penkoske P, Cryer P, Corr P, Roberts R. Rapid activation of the sympathetic nervous system following coronary artery occlusion: relationship to infarct size, site, and haemodynamic impact. Cardiovasc Res. 1979;13:523–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Graham L, Smith P, Stoker J, Mackintosh A, Mary D. Time course of sympathetic neural hyperactivity after uncomplicated acute myocardial infarction. Circulation. 2002;106:793–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Margiocco M, Borgarelli M, Musch T, Hirai D, Hageman K, Fels R, Garcia A, Kenney M. Effects of combined aging and heart failure on visceral sympathetic nerve and cardiovascular responses to progressive hyperthermia in F344 rats. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1555–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Amin P, Singh M, Singh K. Beta-adrenergic receptor-stimulated cardiac myocyte apoptosis: role of beta1 integrins. J Sig Transduct. 2011;2011:179057.Google Scholar
  58. 58.
    Daaka Y, Luttrell L, Lefkowitz R. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390:88–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Nikolaev V, Moshkov A, Lyon A, Miragoli M, Novak P, Paur H, Lohse M, Korchev Y, Harding S, Gorelik J. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science (New York, NY). 2010;327:1653–7.CrossRefGoogle Scholar
  60. 60.
    Communal C, Singh M, Menon B, Xie Z, Colucci W, Singh K. Beta1 integrins expression in adult rat ventricular myocytes and its role in the regulation of beta-adrenergic receptor-stimulated apoptosis. J Cell Biochem. 2003;89:381–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Krishnamurthy P, Subramanian V, Singh M, Singh K. Beta1 integrins modulate beta-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Hypertension. 2007;49:865–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Menon B, Singh M, Singh K. Matrix metalloproteinases mediate beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes. Am J Physiol Cell Physiol. 2005;289:C168–76.PubMedCrossRefGoogle Scholar
  63. 63.
    Menon B, Singh M, Ross R, Johnson J, Singh K. Beta-adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of beta1 integrin signaling and mitochondrial pathway. Am J Physiol Cell Physiol. 2006;290:C254–61.PubMedCrossRefGoogle Scholar
  64. 64.
    Boyle A, Shih H, Hwang J, Ye J, Lee B, Zhang Y, Kwon D, Jun K, Zheng D, Sievers R, Angeli F, Yeghiazarians Y, Lee R. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol. 2011;46:549–59.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Frey N, Olson E. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003;65:45–79.PubMedCrossRefGoogle Scholar
  66. 66.
    Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg T. Expression of collagen binding integrins during cardiac development and hypertrophy. Circ Res. 1991;68:734–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Burgess M, Terracio L, Hirozane T, Borg T. Differential integrin expression by cardiac fibroblasts from hypertensive and exercise-trained rat hearts. Cardiovasc Pathol. 2002;11:78–87.PubMedCrossRefGoogle Scholar
  68. 68.
    Willey C, Balasubramanian S, Rodriguez Rosas MC, Ross R, Kuppuswamy D. Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. J Mol Cell Cardiol. 2003;35:671–83.PubMedCrossRefGoogle Scholar
  69. 69.
    Ren J, Avery J, Zhao H, Schneider J, Ross F, Muslin A. Beta3 integrin deficiency promotes cardiac hypertrophy and inflammation. J Mol Cell Cardiol. 2007;42:367–77.PubMedCrossRefGoogle Scholar
  70. 70.
    Johnston RK, Balasubramanian S, Kasiganesan H, Baicu CF, Zile MR, Kuppuswamy D. Beta3 integrin-mediated ubiquitination activates survival signaling during myocardial hypertrophy. FASEB J. 2009;23:2759–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Konstam M, Kramer D, Patel A, Maron M, Udelson J. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98–108.PubMedCrossRefGoogle Scholar
  72. 72.
    Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, Bosch J, Sussex B, Probstfield J, Yusuf S. Heart outcomes prevention evaluation I. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Kawano H, Cody R, Graf K, Goetze S, Kawano Y, Schnee J, Law R, Hsueh W. Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Hypertension. 2000;35:273–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Brooks W, Conrad C. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol. 2000;32:187–95.PubMedCrossRefGoogle Scholar
  75. 75.
    Aluwihare P, Mu Z, Zhao Z, Yu D, Weinreb P, Horan G, Violette S, Munger J. Mice that lack activity of alphavbeta6- and alphavbeta8-integrins reproduce the abnormalities of Tgf-beta1 and Tgf-beta3 null mice. J Cell Sci. 2009;122:227–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Schmidt U, del Monte F, Miyamoto M, Matsui T, Gwathmey J, Rosenzweig A, Hajjar R. Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circulation. 2000;101:790–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Sherif H, Saraste A, Nekolla S, Weidl E, Reder S, Tapfer A, Rudelius M, Higuchi T, Botnar R, Wester HJ, Schwaiger M. Molecular imaging of early alphav beta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J Nucl Med. 2012;53:318–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Laura L. Daniel
    • 1
  • William L. Joyner
    • 1
  • Mahipal Singh
    • 1
  • Krishna Singh
    • 2
    Email author
  1. 1.Department of Biomedical SciencesEast Tennessee State UniversityJohnson CityUSA
  2. 2.Department of Biomedical SciencesEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations