Aging-Related Changes in Extracellular Matrix: Implications for Ventricular Remodeling Following Myocardial Infarction

  • Nguyen T. Nguyen
  • Andriy Yabluchanskiy
  • Lisandra E. de Castro Brás
  • Yu-Fang Jin
  • Merry L. LindseyEmail author


In humans, age-related changes in the myocardium include increases in vascular intimal thickness, vascular stiffness, left ventricle (LV) wall thickness, and left atrial size. These changes in tissue structure and function are the result of altered expression profiles of extracellular matrix (ECM) components. While aging itself is not a pathological condition, this resetting of homeostasis sets up the LV to respond poorly to stress. As a reflection of this, morbidity and mortality rates after myocardial infarction (MI) strongly correlate with advancing age. To date, targeting specific ECM components for therapeutic purposes has only been achieved by indirect mechanisms. This book chapter summarizes the current knowledge of ECM remodeling during aging and MI, focusing on mechanistic insights that may reveal avenues to explore for therapeutic potential.


Vascular Endothelial Growth Factor Left Ventricle Aldosterone Antagonist Infarct Region Left Ventricle Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Extracellular matrix


Left ventricle


Matrix metalloproteinase


Myocardial infarction




Secreted protein acidic and rich in cysteine




Tissue inhibitors of metalloproteinase


Transforming growth factor


Vascular endothelia growth factor


  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.PubMedCrossRefGoogle Scholar
  2. 2.
    Kuller LH, Arnold AM, Psaty BM, Robbins JA, O’Leary DH, Tracy RP, et al. 10-year follow-up of subclinical cardiovascular disease and risk of coronary heart disease in the Cardiovascular Health Study. Arch Intern Med. 2006;166(1):71–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106(24):3068–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Yang XS, Willems JL, Pardaens J, De Geest H. Acute myocardial infarction in the very elderly. A comparison with younger age groups. Acta Cardiol. 1987;42(1):59–68.PubMedGoogle Scholar
  5. 5.
    Jhund PS, McMurray JJ. Heart failure after acute myocardial infarction: a lost battle in the war on heart failure? Circulation. 2008;118(20):2019–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Velazquez EJ, Francis GS, Armstrong PW, Aylward PE, Diaz R, O’Connor CM, et al. An international perspective on heart failure and left ventricular systolic dysfunction complicating myocardial infarction: the VALIANT registry. Eur Heart J. 2004;25(21):1911–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Velagaleti RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, D’Agostino RB, et al. Long-term trends in the incidence of heart failure after myocardial infarction. Circulation. 2008;118(20):2057–62.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Welsh RC, McAlister FA. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol. 2009;53(1):13–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation. 2003;107(1):139–46.PubMedCrossRefGoogle Scholar
  10. 10.
    Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation. 2003;107(2):346–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation. 2003;107(3):490–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Chiao YA, Ramirez TA, Zamilpa R, Okoronkwo SM, Dai Q, Zhang J, et al. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in aging mice. Cardiovasc Res. 2012;96(3):444–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Jacob MP. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed Pharmacother. 2003;57(5–6):195–202.PubMedCrossRefGoogle Scholar
  14. 14.
    Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol. 2008;130(2):147–58.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    McCormick RJ, Thomas DP. Collagen crosslinking in the heart: relationship to development and function. Basic Appl Myol. 1998;8(2):143–50.Google Scholar
  16. 16.
    Burgess ML, McCrea JC, Hedrick HL. Age-associated changes in cardiac matrix and integrins. Mech Ageing Dev. 2001;122(15):1739–56.PubMedCrossRefGoogle Scholar
  17. 17.
    Gramley F, Lorenzen J, Knackstedt C, Rana OR, Saygili E, Frechen D, et al. Age-related atrial fibrosis. Age (Dordr). 2009;31(1):27–38.CrossRefGoogle Scholar
  18. 18.
    Gazoti Debessa CR, Mesiano Maifrino LB, de Rodrigues Souza R. Age related changes of the collagen network of the human heart. Mech Ageing Dev. 2001;122(10):1049–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Bogoslavsky Levy Mendes A, Ferro M, Rodrigues B, Rodrigues de Souza M, Correa Araujo R, Rodrigues de Souza R. Quantification of left ventricular myocardial collagen system in children, young adults, and the elderly. Medicina (B Aires). 2012;72(3):216–20Google Scholar
  20. 20.
    Lindsey ML, Goshorn DK, Squires CE, Escobar GP, Hendrick JW, Mingoia JT, et al. Age-dependent changes in myocardial matrix metalloproteinase/tissue inhibitor of metalloproteinase profiles and fibroblast function. Cardiovasc Res. 2005;66(2):410–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Korpos E, Wu C, Sorokin L. Multiple roles of the extracellular matrix in inflammation. Curr Pharm Des. 2009;15(12):1349–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang T, Chiao YA, Wang Y, Voorhees A, Han HC, Lindsey ML, and Jin YF. Mathematical modeling of left ventricular dimensional changes in mice during aging. BMC Syst Biol. 2012;6(3):S10. doi: 10.1186/1752-0509-6-S3-S10.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Thomas DP, Zimmerman SD, Hansen TR, Martin DT, McCormick RJ. Collagen gene expression in rat left ventricle: interactive effect of age and exercise training. J Appl Physiol. 2000;89(4):1462–8.PubMedGoogle Scholar
  24. 24.
    Chen Y, Abraham DJ, Shi-wen X, Pearson JD, Black CM, Lyons KM, et al. CCN2 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol Biol Cell. 2004;15(12):5635–46.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Oliviero P, Chassagne C, Salichon N, Corbier A, Hamon G, Marotte F, et al. Expression of laminin alpha2 chain during normal and pathological growth of myocardium in rat and human. Cardiovasc Res. 2000;46(2):346–55.PubMedCrossRefGoogle Scholar
  26. 26.
    Mamuya W, Chobanian A, Brecher P. Age-related changes in fibronectin expression in spontaneously hypertensive, Wistar-Kyoto, and Wistar rat hearts. Circ Res. 1992;71(6):1341–50.PubMedCrossRefGoogle Scholar
  27. 27.
    He Y, Jones KJ, Vignier N, Morgan G, Chevallay M, Barois A, et al. Congenital muscular dystrophy with primary partial laminin alpha2 chain deficiency: molecular study. Neurology. 2001;57(7):1319–22.PubMedCrossRefGoogle Scholar
  28. 28.
    Conway SJ, Molkentin JD. Periostin as a heterofunctional regulator of cardiac development and disease. Curr Genomics. 2008;9(8):548–55.PubMedCrossRefGoogle Scholar
  29. 29.
    Ma Y, Chiao YA, Zhang J, Manicone AM, Jin YF, Lindsey ML. Matrix metalloproteinase-28 deletion amplifies inflammatory and extracellular matrix responses to cardiac aging. Microsc Microanal. 2012;18(1):81–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221–64.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro Jr A, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest. 2000;106(3):349–60.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Hellstrom M, Johansson B, Engstrom-Laurent A. Hyaluronan and its receptor CD44 in the heart of newborn and adult rats. Anat Rec A: Discov Mol Cell Evol Biol. 2006;288(6):587–92.CrossRefGoogle Scholar
  33. 33.
    Hattori N, Carrino DA, Lauer ME, Vasanji A, Wylie JD, Nelson CM, et al. Pericellular versican regulates the fibroblast-myofibroblast transition: a role for ADAMTS5 protease-mediated proteolysis. J Biol Chem. 2011;286(39):34298–310.PubMedCrossRefGoogle Scholar
  34. 34.
    Henderson DJ, Copp AJ. Versican expression is associated with chamber specification, septation, and valvulogenesis in the developing mouse heart. Circ Res. 1998;83(5):523–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Bonnema DD, Zile MR. Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol. 2010;298(2):H614–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Swinnen M, Vanhoutte D, Van Almen GC, Hamdani N, Schellings MW, D’Hooge J, et al. Absence of thrombospondin-2 causes age-related dilated cardiomyopathy. Circulation. 2009;120(16):1585–97.PubMedCrossRefGoogle Scholar
  37. 37.
    Graf K, Do YS, Ashizawa N, Meehan WP, Giachelli CM, Marboe CC, et al. Myocardial osteopontin expression is associated with left ventricular hypertrophy. Circulation. 1997;96(9):3063–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Bonnema DD, Webb CS, Pennington WR, Stroud RE, Leonardi AE, Clark LL, et al. Effects of age on plasma matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs). J Card Fail. 2007;13(7):530–40.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Biernacka A, Frangogiannis NG. Aging and cardiac fibrosis. Aging Dis. 2011;2(2):158–73.PubMedCentralPubMedGoogle Scholar
  40. 40.
    Li Z, Froehlich J, Galis ZS, Lakatta EG. Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension. 1999;33(1):116–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang M, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arterioscler Thromb Vasc Biol. 2006;26(7):1503–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Iemitsu M, Maeda S, Jesmin S, Otsuki T, Miyauchi T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol. 2006;291(3):H1290–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Cleutjens J, Verluyten M, Smiths J, Daemen M. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147(2):325–38.PubMedGoogle Scholar
  44. 44.
    Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG. Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res. 2006;324(3):475–88.PubMedCrossRefGoogle Scholar
  45. 45.
    Lopez B, Gonzalez A, Hermida N, Valencia F, de Teresa E, Diez J. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. Am J Physiol Heart Circ Physiol. 2010;299(1):H1–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Casscells W, Kimura H, Sanchez JA, Yu ZX, Ferrans VJ. Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol. 1990;137(4):801–10.PubMedGoogle Scholar
  47. 47.
    McCurdy SM, Dai Q, Zhang J, Zamilpa R, Ramirez TA, Dayah T, et al. SPARC mediates early extracellular matrix remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;301(2):H497–505.PubMedCrossRefGoogle Scholar
  48. 48.
    Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, et al. Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med. 2008;205(2):295–303.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol. 2010;48(3):504–11.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Tamaoki M, Imanaka-Yoshida K, Yokoyama K, Nishioka T, Inada H, Hiroe M, et al. Tenascin-C regulates recruitment of myofibroblasts during tissue repair after myocardial injury. Am J Pathol. 2005;167(1):71–80.PubMedCrossRefGoogle Scholar
  51. 51.
    Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, et al. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005;111(22):2935–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Sun M, Opavsky MA, Stewart DJ, Rabinovitch M, Dawood F, Wen WH, et al. Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation. 2003;107(7):1046–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Krishnamurthy P, Subramanian V, Singh M, Singh K. Deficiency of beta1 integrins results in increased myocardial dysfunction after myocardial infarction. Heart. 2006;92(9):1309–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Peterson JT, Li H, Dillon L, Bryant JW. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res. 2000;46(2):307–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Lindsey ML, Escobar GP, Mukherjee R, Goshorn DK, Sheats NJ, Bruce JA, et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation. 2006;113(25):2919–28.PubMedCrossRefGoogle Scholar
  56. 56.
    Deten A, Volz HC, Holzl A, Briest W, Zimmer HG. Effect of propranolol on cardiac cytokine expression after myocardial infarction in rats. Mol Cell Biochem. 2003;251(1–2):127–37.PubMedCrossRefGoogle Scholar
  57. 57.
    Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, et al. Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation. 2001;103:2181–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Lu L, Zhang JQ, Ramires FJ, Sun Y. Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun. 2004;320(3):907–13.PubMedCrossRefGoogle Scholar
  59. 59.
    Kandalam V, Basu R, Abraham T, Wang X, Awad A, Wang W, et al. Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol. 2010;299(4):H1012–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Duncan AM, Burrell LM, Kladis A, Campbell DJ. Angiotensin and bradykinin peptides in rats with myocardial infarction. J Card Fail. 1997;3(1):41–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol. 1993;25(11):1369–80.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res. 2010;80(2):188–94.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Yang Y, Ma Y, Han W, Li J, Xiang Y, Liu F, et al. Age-related differences in postinfarct left ventricular rupture and remodeling. Am J Physiol Heart Circ Physiol. 2008;294(4):H1815–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Bujak M, Kweon HJ, Chatila K, Li N, Taffet G, Frangogiannis NG. Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol. 2008;51(14):1384–92.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119(14):1977–2016.PubMedCrossRefGoogle Scholar
  66. 66.
    Mebazaa A. Current ESC/ESICM and ACCF/AHA guidelines for the diagnosis and management of acute heart failure in adults––are there differences? Pol Arch Med Wewn. 2009;119(9):569–73.PubMedGoogle Scholar
  67. 67.
    Davies MK, Gibbs CR, Lip GY. ABC of heart failure. Management: diuretics, ACE inhibitors, and nitrates. BMJ. 2000;320(7232):428–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Olinic N, Vida-Simiti L, Cristea A, Muresan A, Pop S, Tesanu E. Correlation between fibronectin and cardiothoracic ratio in heart failure treated with angiotensin converting enzyme inhibitors. Rom J Intern Med = Revue roumaine de medecine interne. 1994;32(4):253–7.Google Scholar
  69. 69.
    Wapstra FH, Navis GJ, van Goor H, van den Born J, Berden JH, de Jong PE, et al. ACE inhibition preserves heparan sulfate proteoglycans in the glomerular basement membrane of rats with established adriamycin nephropathy. Exp Nephrol. 2001;9(1):21–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Chatzikyriakou SV, Tziakas DN, Chalikias GK, Stakos D, Thomaidi A, Mitrousi K, et al. Chronic heart failure patients with high collagen type I degradation marker levels benefit more with ACE-inhibitor therapy. Eur J Pharmacol. 2010;628(1–3):164–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Singh K, Sirokman G, Communal C, Robinson KG, Conrad CH, Brooks WW, et al. Myocardial osteopontin expression coincides with the development of heart failure. Hypertension. 1999;33(2):663–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Tyralla K, Adamczak M, Benz K, Campean V, Gross ML, Hilgers KF, et al. High-dose enalapril treatment reverses myocardial fibrosis in experimental uremic cardiomyopathy. PLoS One. 2011;6(1):e15287.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Saygili E, Rana OR, Meyer C, Gemein C, Andrzejewski MG, Ludwig A, et al. The angiotensin-calcineurin-NFAT pathway mediates stretch-induced up-regulation of matrix metalloproteinases-2/-9 in atrial myocytes. Basic Res Cardiol. 2009;104(4):435–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Kontogiorgis CA, Papaioannou P, Hadjipavlou-Litina DJ. Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results. Curr Med Chem. 2005;12(3):339–55.PubMedCrossRefGoogle Scholar
  75. 75.
    Yamamoto D, Takai S, Miyazaki M. Inhibitory profiles of captopril on matrix metalloproteinase-9 activity. Eur J Pharmacol. 2008;588(2–3):277–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Barreras A, Gurk-Turner C. Angiotensin II receptor blockers. Proc (Bayl Univ Med Cent). 2003;16(1):123–6.Google Scholar
  77. 77.
    Fischer JW, Stoll M, Hahn AW, Unger T. Differential regulation of thrombospondin-1 and fibronectin by angiotensin II receptor subtypes in cultured endothelial cells. Cardiovasc Res. 2001;51(4):784–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Ruperez M, Lorenzo O, Blanco-Colio LM, Esteban V, Egido J, Ruiz-Ortega M. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation. 2003;108(12):1499–505.PubMedCrossRefGoogle Scholar
  79. 79.
    Yamamoto K, Mano T, Yoshida J, Sakata Y, Nishikawa N, Nishio M, et al. ACE inhibitor and angiotensin II type 1 receptor blocker differently regulate ventricular fibrosis in hypertensive diastolic heart failure. J Hypertens. 2005;23(2):393–400.PubMedCrossRefGoogle Scholar
  80. 80.
    Cipollone F, Fazia M, Iezzi A, Pini B, Cuccurullo C, Zucchelli M, et al. Blockade of the angiotensin II type 1 receptor stabilizes atherosclerotic plaques in humans by inhibiting prostaglandin E2-dependent matrix metalloproteinase activity. Circulation. 2004;109(12):1482–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Yamashita C, Hayashi T, Mori T, Tazawa N, Kwak CJ, Nakano D, et al. Angiotensin II receptor blocker reduces oxidative stress and attenuates hypoxia-induced left ventricular remodeling in apolipoprotein E-knockout mice. Hypertens Res. 2007;30(12):1219–30.PubMedCrossRefGoogle Scholar
  82. 82.
    Albert NM, Yancy CW, Liang L, Zhao X, Hernandez AF, Peterson ED, et al. Use of aldosterone antagonists in heart failure. JAMA. 2009;302(15):1658–65.PubMedCrossRefGoogle Scholar
  83. 83.
    MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res. 1997;35(1):30–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Brilla CG. Aldosterone and myocardial fibrosis in heart failure. Herz. 2000;25(3):299–306.PubMedCrossRefGoogle Scholar
  85. 85.
    Rastogi S, Mishra S, Zaca V, Alesh I, Gupta RC, Goldstein S, et al. Effect of long-term monotherapy with the aldosterone receptor blocker eplerenone on cytoskeletal proteins and matrix metalloproteinases in dogs with heart failure. Cardiovasc Drugs Ther. 2007;21(6):415–22.PubMedCrossRefGoogle Scholar
  86. 86.
    Tanabe A, Naruse M, Hara Y, Sato A, Tsuchiya K, Nishikawa T, et al. Aldosterone antagonist facilitates the cardioprotective effects of angiotensin receptor blockers in hypertensive rats. J Hypertens. 2004;22(5):1017–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Gorre F, Vandekerckhove H. Beta-blockers: focus on mechanism of action. Which beta-blocker, when and why? Acta Cardiol. 2010;65(5):565–70.PubMedGoogle Scholar
  88. 88.
    Sampat U, Varadarajan P, Turk R, Kamath A, Khandhar S, Pai RG. Effect of beta-blocker therapy on survival in patients with severe aortic regurgitation results from a cohort of 756 patients. J Am Coll Cardiol. 2009;54(5):452–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Hamdani N, Paulus WJ, van Heerebeek L, Borbely A, Boontje NM, Zuidwijk MJ, et al. Distinct myocardial effects of beta-blocker therapy in heart failure with normal and reduced left ventricular ejection fraction. Eur Heart J. 2009;30(15):1863–72.PubMedCrossRefGoogle Scholar
  90. 90.
    Mustonen E, Leskinen H, Aro J, Luodonpaa M, Vuolteenaho O, Ruskoaho H, et al. Metoprolol treatment lowers thrombospondin-4 expression in rats with myocardial infarction and left ventricular hypertrophy. Basic Clin Pharmacol Toxicol. 2010;107(3):709–17.PubMedCrossRefGoogle Scholar
  91. 91.
    Senzaki H, Paolocci N, Gluzband YA, Lindsey ML, Janicki JS, Crow MT, et al. Beta-blockade prevents sustained metalloproteinase activation and diastolic stiffening induced by angiotensin II combined with evolving cardiac dysfunction. Circ Res. 2000;86(7):807–15.PubMedCrossRefGoogle Scholar
  92. 92.
    Porter KE, Turner NA. Statins and myocardial remodelling: cell and molecular pathways. Expert Rev Mol Med. 2011;13:e22.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen J, Mehta JL. Angiotensin II-mediated oxidative stress and procollagen-1 expression in cardiac fibroblasts: blockade by pravastatin and pioglitazone. Am J Physiol Heart Circ Physiol. 2006;291(4):H1738–45.PubMedCrossRefGoogle Scholar
  94. 94.
    Shyu KG, Wang BW, Chen WJ, Kuan P, Hung CR. Mechanism of the inhibitory effect of atorvastatin on endoglin expression induced by transforming growth factor-beta1 in cultured cardiac fibroblasts. Eur J Heart Fail. 2010;12(3):219–26.PubMedCrossRefGoogle Scholar
  95. 95.
    Porter KE, Turner NA, O’Regan DJ, Ball SG. Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion: inhibition by simvastatin. Cardiovasc Res. 2004;64(3):507–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nguyen T. Nguyen
    • 1
  • Andriy Yabluchanskiy
    • 2
  • Lisandra E. de Castro Brás
    • 2
  • Yu-Fang Jin
    • 1
  • Merry L. Lindsey
    • 2
    • 3
    Email author
  1. 1.San Antonio Cardiovascular Proteomics Center, Department of Electrical and Computer EngineeringUniversity of Texas at San AntonioSan AntonioUSA
  2. 2.San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, Department of Physiology and BiophysicsUniversity of MississippiJacksonUSA
  3. 3.Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations