Advertisement

Aging-Related Changes in Cell Death and Cell Survival Pathways and Implications for Heart Failure Therapy

  • Guido R. Y. De MeyerEmail author
  • Dorien M. Schrijvers
  • Wim Martinet
Chapter

Abstract

Underlying the aging process is a lifelong accumulation of molecular damage. When DNA damage is too extensive to be repaired or when the repairing cascades are impaired, e.g., during chronic oxidative stress associated with aging, apoptosis occurs. A very low, albeit elevated, rate of apoptosis can be an important factor in the pathogenesis of heart failure, making it a potential target for therapy. Necrosis is even more prominent in failing human hearts than apoptosis.

Autophagy is an essential and protective pathway in the heart. However, during aging, the rate of protective autophagy declines. The progressive inhibition of autophagy in the aging heart is in part attributed to intralysosomal accumulation of lipofuscin. Cross-linked polymeric lipofuscin cannot be degraded by lysosomal hydrolases and leads to preferential allocation of lysosomal enzymes to lipofuscin-loaded lysosomes at the expense of active autolysosomes. Impaired autophagy further stimulates accumulation of damaged mitochondria, which are deficient in ATP production and which produce large amounts of reactive oxygen species (ROS). Moreover, oxidatively modified cytosolic proteins form large indigestible aggregates, enhancing lipofuscinogenesis and sensitizing cardiomyocytes to undergo apoptosis/necrosis, eventually leading to heart failure.

Pharmacological inhibition of apoptosis and necrosis improves heart function and survival. Currently used drugs in heart failure therapy, such as ACE-inhibitors and β-adrenergic receptor blockers, prevent apoptosis. However, complete inhibition of apoptosis might have adverse effects. Furthermore, compounds that “supplement” the decreased levels of autophagy during aging, such as AMPK activators, mTOR inhibitors, and/or sirtuin activators, might be of great value in heart failure therapy by preventing apoptosis and necrosis and stimulating cardiomyocyte survival. However, the dosing should be carefully set in order to avoid excessive autophagic cell death.

Keywords

Heart Failure Endoplasmic Reticulum Stress Caloric Restriction mTOR Inhibitor Mitochondrial Permeability Transition Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ACE

Angiotensin-converting enzyme

AMPK

AMP-activated protein kinase

AR

Adrenergic receptor

ARC

Apoptosis repressor with caspase recruitment domain

ATG

Autophagy-related genes

ER

Endoplasmic reticulum

FOXO

Forkhead box protein O

MPTP

Mitochondrial permeability transition pore

mTOR

Mammalian target of rapamycin

References

  1. 1.
    Kirkwood TB. Understanding the odd science of aging. Cell. 2005;120:437–47.PubMedCrossRefGoogle Scholar
  2. 2.
    Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40:333–44.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Martinet W, Knaapen MW, De Meyer GRY, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation. 2002;106:927–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedCrossRefGoogle Scholar
  5. 5.
    Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111:245–59.PubMedCrossRefGoogle Scholar
  6. 6.
    Chiong M, Wang ZV, Pedrozo Z, Cao DJ, Troncoso R, Ibacache M, et al. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2011;2:e244.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    de Freitas EV, Batlouni M, Gamarsky R. Heart failure in the elderly. J Geriatr Cardiol. 2012;9:101–7.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Mani K. Programmed cell death in cardiac myocytes: strategies to maximize post-ischemic salvage. Heart Fail Rev. 2008;13:193–209.PubMedCrossRefGoogle Scholar
  10. 10.
    Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111:1497–504.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol. 2010;72:19–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P. Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 2008;8:207–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.PubMedCrossRefGoogle Scholar
  14. 14.
    Nakayama H, Chen X, Baines CP, Klevitsky R, Zhang X, Zhang H, et al. Ca2+- and mitochondrial-dependent cardiomyocyte necrosis as a primary mediator of heart failure. J Clin Invest. 2007;117:2431–44.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.PubMedCrossRefGoogle Scholar
  16. 16.
    Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami CA, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85:856–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Martinet W, Agostinis P, Vanhoecke B, Dewaele M, De Meyer GRY. Autophagy in disease: a double-edged sword with therapeutic potential. Clin Sci (Lond). 2009;116:697–712.CrossRefGoogle Scholar
  20. 20.
    Gottlieb RA, Finley KD, Mentzer Jr RM. Cardioprotection requires taking out the trash. Basic Res Cardiol. 2009;104:169–80.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dutta D, Calvani R, Bernabei R, Leeuwenburgh C, Marzetti E. Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities. Circ Res. 2012;110:1125–38.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14:146–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Taneike M, Yamaguchi O, Nakai A, Hikoso S, Takeda T, Mizote I, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy. 2010;6:600–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Inuzuka Y, Okuda J, Kawashima T, Kato T, Niizuma S, Tamaki Y, et al. Suppression of phosphoinositide 3-kinase prevents cardiac aging in mice. Circulation. 2009;120:1695–703.PubMedCrossRefGoogle Scholar
  26. 26.
    Hua Y, Zhang Y, Ceylan-Isik AF, Wold LE, Nunn JM, Ren J. Chronic Akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Res Cardiol. 2011;106:1173–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Wohlgemuth SE, Julian D, Akin DE, Fried J, Toscano K, Leeuwenburgh C, et al. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res. 2007;10:281–92.PubMedCrossRefGoogle Scholar
  28. 28.
    Salminen A, Hyttinen JM, Kauppinen A, Kaarniranta K. Context-Dependent Regulation of Autophagy by IKK-NF-kappaB Signaling: Impact on the Aging Process. Int J Cell Biol. 2012;2012:849541.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Brunk UT, Terman A. The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem. 2002;269:1996–2002.PubMedCrossRefGoogle Scholar
  30. 30.
    De Meyer GRY, De Keulenaer GW, Martinet W. Role of autophagy in heart failure associated with aging. Heart Fail Rev. 2010;15:423–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Shih H, Lee B, Lee RJ, Boyle AJ. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol. 2011;57:9–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol. 2010;299:C203–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Marin-Garcia J, Akhmedov AT, Moe GW. Mitochondria in heart failure: the emerging role of mitochondrial dynamics. Heart Fail Rev. 2013;18(4):439–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen L, Knowlton AA. Mitochondrial dynamics in heart failure. Congest Heart Fail. 2011;17:257–61.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol. 2011;32:275–81.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, et al. Myocytes die by multiple mechanisms in failing human hearts. Circ Res. 2003;92:715–24.PubMedCrossRefGoogle Scholar
  37. 37.
    Villalba JM, Alcain FJ. Sirtuin activators and inhibitors. Biofactors. 2012;38(5):349–59.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Porcu M, Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension. Trends Pharmacol Sci. 2005;26:94–103.PubMedCrossRefGoogle Scholar
  39. 39.
    Naiman S, Kanfi Y, Cohen HY. Sirtuins as regulators of mammalian aging. Aging (Albany, NY). 2012;4(8):521–2.Google Scholar
  40. 40.
    Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA. 2000;97:14178–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology. 2012;13:119–31.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85:258–63.PubMedCrossRefGoogle Scholar
  43. 43.
    Tanno M, Kuno A, Horio Y, Miura T. Emerging beneficial roles of sirtuins in heart failure. Basic Res Cardiol. 2012;107:273.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Giralt A, Villarroya F. SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J. 2012;444:1–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang F, Chen HZ, Lv X, Liu DP. SIRT1 as a novel potential treatment target for vascular aging and age-related vascular diseases. Curr Mol Med. 2013;13(1):155–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol. 2008;28:6384–401.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Smith J. Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol. 2002;12:404–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Li S, Banck M, Mujtaba S, Zhou MM, Sugrue MM, Walsh MJ. p53-induced growth arrest is regulated by the mitochondrial SirT3 deacetylase. PLoS One. 2010;5:e10486.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem. 2005;280:43121–30.PubMedCrossRefGoogle Scholar
  50. 50.
    Pfister JA, Ma C, Morrison BE, D’Mello SR. Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS One. 2008;3:e4090.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Venkatapuram S, Wang C, Krolikowski JG, Weihrauch D, Kersten JR, Warltier DC, et al. Inhibition of apoptotic protein p53 lowers the threshold of isoflurane-induced cardioprotection during early reperfusion in rabbits. Anesth Analg. 2006;103:1400–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany, NY). 2010;2:914–23.Google Scholar
  54. 54.
    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107:1470–82.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem. 2010;285:3133–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25:9554–75.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Boyle AJ, Shih H, Hwang J, Ye J, Lee B, Zhang Y, et al. Cardiomyopathy of aging in the mammalian heart is characterized by myocardial hypertrophy, fibrosis and a predisposition towards cardiomyocyte apoptosis and autophagy. Exp Gerontol. 2011;46:549–59.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res. 2008;102:201–8.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest. 1998;101:1326–42.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Asai K, Yang GP, Geng YJ, Takagi G, Bishop S, Ishikawa Y, et al. Beta-adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(salpha) mouse. J Clin Invest. 1999;104:551–8.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Ni L, Zhou C, Duan Q, Lv J, Fu X, Xia Y, et al. beta-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure. PLoS One. 2011;6:e27294.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA. 2001;98:1607–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Talan MI, Ahmet I, Xiao RP, Lakatta EG. beta(2) AR agonists in treatment of chronic heart failure: long path to translation. J Mol Cell Cardiol. 2011;51:529–33.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med. 2000;342:154–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Cook NR, Albert CM, Gaziano JM, Zaharris E, MacFadyen J, Danielson E, et al. A randomized factorial trial of vitamins C and E and beta carotene in the secondary prevention of cardiovascular events in women: results from the Women’s Antioxidant Cardiovascular Study. Arch Intern Med. 2007;167:1610–8.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Yarbrough WM, Mukherjee R, Squires CE, Reese ES, Leiser JS, Stroud RE, et al. Caspase inhibition attenuates contractile dysfunction following cardioplegic arrest and rewarming in the setting of left ventricular failure. J Cardiovasc Pharmacol. 2004;44:645–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Gezelius C, Eriksson A. Neoplastic disease in a medicolegal autopsy material. A retrospective study in northern Sweden. Z Rechtsmed. 1988;101:115–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Nam YJ, Mani K, Ashton AW, Peng CF, Krishnamurthy B, Hayakawa Y, et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell. 2004;15:901–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, et al. Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation. 2006;113:1203–12.PubMedCrossRefGoogle Scholar
  71. 71.
    Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Hausenloy DJ, Boston-Griffiths EA, Yellon DM. Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol. 2012;165:1235–45.PubMedCrossRefGoogle Scholar
  73. 73.
    Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111:194–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Lim SY, Davidson SM, Mocanu MM, Yellon DM, Smith CC. The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 2007;21:467–9.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Scheller C, Knoferle J, Ullrich A, Prottengeier J, Racek T, Sopper S, et al. Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus. J Cell Biochem. 2006;97:1350–61.PubMedCrossRefGoogle Scholar
  76. 76.
    Rifki OF, Hill JA. Cardiac autophagy: good with the bad. J Cardiovasc Pharmacol. 2012;60(3):248–52.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle. 2012;11:2092–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–65.Google Scholar
  80. 80.
    Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Sillje HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301:H459–68.PubMedCrossRefGoogle Scholar
  81. 81.
    Jia L, Hui RT. Everolimus, a promising medical therapy for coronary heart disease? Med Hypotheses. 2009;73:153–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Martinet W, De Meyer GRY. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res. 2009;104:304–17.PubMedCrossRefGoogle Scholar
  83. 83.
    De Meyer GRY, Martinet W. Autophagy in the cardiovascular system. Biochim Biophys Acta. 2009;1793:1485–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Verheye S, Martinet W, Kockx MM, Knaapen MW, Salu K, Timmermans JP, et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J Am Coll Cardiol. 2007;49:706–15.PubMedCrossRefGoogle Scholar
  85. 85.
    Schrijvers DM, De Meyer GRY, Martinet W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler Thromb Vasc Biol. 2011;31:2787–91.PubMedCrossRefGoogle Scholar
  86. 86.
    Martinet W, Verheye S, De Meyer GRY. Everolimus-induced mTOR inhibition selectively depletes macrophages in atherosclerotic plaques by autophagy. Autophagy. 2007;3:241–4.PubMedGoogle Scholar
  87. 87.
    Kushwaha S, Xu X. Target of rapamycin (TOR)-based therapy for cardiomyopathy: evidence from zebrafish and human studies. Trends Cardiovasc Med. 2012;22:39–43.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Harries LW, Fellows AD, Pilling LC, Hernandez D, Singleton A, Bandinelli S, et al. Advancing age is associated with gene expression changes resembling mTOR inhibition: Evidence from two human populations. Mech Ageing Dev. 2012;133:556–62.PubMedCrossRefGoogle Scholar
  89. 89.
    Baur JA, Ungvari Z, Minor RK, Le Couteur DG, de Cabo R. Are sirtuins viable targets for improving healthspan and lifespan? Nat Rev Drug Discov. 2012;11:443–61.PubMedCrossRefGoogle Scholar
  90. 90.
    Tanno M, Kuno A, Yano T, Miura T, Hisahara S, Ishikawa S, et al. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem. 2010;285:8375–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Petrovski G, Gurusamy N, Das DK. Resveratrol in cardiovascular health and disease. Ann NY Acad Sci. 2011;1215:22–33.PubMedCrossRefGoogle Scholar
  92. 92.
    Bahro M, Pfeifer U. Short-term stimulation by propranolol and verapamil of cardiac cellular autophagy. J Mol Cell Cardiol. 1987;19:1169–78.PubMedCrossRefGoogle Scholar
  93. 93.
    Weiss EP, Fontana L. Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol. 2011;301:H1205–19.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Guido R. Y. De Meyer
    • 1
    Email author
  • Dorien M. Schrijvers
    • 2
  • Wim Martinet
    • 2
  1. 1.Department of PhysiopharmacologyUniversity of AntwerpAntwerpBelgium
  2. 2.Department of PhysiopharmacologyUniversity of AntwerpAntwerpBelgium

Personalised recommendations