The RAAS in Heart Failure: An Update on Clinical Trials and Opportunities for Therapy

  • C. Tissa KappagodaEmail author
  • Ezra A. Amsterdam


Heart failure continues to be a significant health problem worldwide. Despite significant progress in our understanding of the pathophysiology of the condition, its medical management remains a challenge, with a significant 5-year mortality. At the present time, treatment of heart failure has centered on the idea that its clinical manifestations are associated with a derangement of the renin-angiotensin-aldosterone system (RAAS) leading eventually to retention of salt and water. However, the RAAS is no longer viewed as a single endocrine system operating through blood-borne humoral agents but as a more complex system involving a variety of cell types which influence the functions of the cardiovascular system in health and disease. The latter effects, particularly those involving the actions of nitric oxide and endothelial cell function, may open new options for therapy in the future.


Heart Failure Leave Ventricular Ejection Fraction Diastolic Dysfunction Systolic Heart Failure Diastolic Heart Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen J, Normand ST, Wang Y, Krumholz HM. National and regional trends in heart failure hospitalization and mortality rates for medicare beneficiaries, 1998–2008. JAMA. 2011;306:1669–78.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Fukuta H, Little WC. Contribution of systolic and diastolic abnormalities to heart failure with a normal and a reduced ejection fraction. Prog Cardiovasc Dis. 2007;49:229–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Krishnaswamy P, Lubien E, Clopton P, et al. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am J Med. 2001;111:274–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Tschope C, Kasner M, Westermann D, Gaub R, Poller WC, Schultheiss H-P. The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements. Eur Heart J. 2005;26:2277–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Martos R, Baugh J, Ledwidge M, et al. Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail. 2009;11:191–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Kitzman DW. Diastolic heart failure in the elderly. Heart Fail Rev. 2002;7:17–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Gottdiener JS, Arnold AM, Aurigemma GP, et al. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol. 2000;35:1628–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Vasan RS, Larson MG, Benjamin EJ, Evans JC, Reiss CK, Levy D. Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J Am Coll Cardiol. 1999;33:1948–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Meta-analysis Research Group in Echocardiography Heart Failure C. Independence of restrictive filling pattern and LV ejection fraction with mortality in heart failure: an individual patient meta-analysis. Eur J Heart Fail. 2008;10:786–92.CrossRefGoogle Scholar
  12. 12.
    Halley LM, Houghtaling PL, Khalil MK, Thomas JD, Jaber WA. Mortality rate in patients with diastolic dysfunction and normal systolic function. Arch Intern Med. 2011;171:1082–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Tsutsui H, Tsuchihashi M, Takeshita A. Mortality and readmission of hospitalized patients with congestive heart failure and preserved versus depressed systolic function. Am J Cardiol. 2001;88:530–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Braunwald E, Grossman GW, editors. Clinical aspects of heart failure. London: W.B. Saunders; 1992.Google Scholar
  15. 15.
    Uhley HN, Leeds SE, Sampson JJ, Friedman M. Right duct lymph flow in experimental heart failure following acute elevation of left atrial pressure. Circ Res. 1967;20:306–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Starling EH. The production and absorption of lymph. London: Pentland; 1895.Google Scholar
  17. 17.
    Landis EM. Microinjection studies of capillary blood pressure in human skin. Heart. 1930;15:209–28.Google Scholar
  18. 18.
    Guyton AC, Lindsay AW. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res. 1959;7:649–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Pietra G, Magno M. Pharmacological factors influencing permeability of the bronchial microcirculation. Fed Proc. 1978;37:2466–70.PubMedGoogle Scholar
  20. 20.
    Staub NC, Nagano H, Pearce ML. Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. J Appl Physiol. 1967;22:227–40.PubMedGoogle Scholar
  21. 21.
    Ravi K, Kappagoda T. Rapidly adapting receptors in acute heart failure and their impact on dyspnea. Respir Physiol Neurobiol. 2009;167:107–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Guazzi M. Alveolar gas diffusion abnormalities in heart failure. J Card Fail. 2008;14:695–702.PubMedCrossRefGoogle Scholar
  23. 23.
    Rimoldi SF, Yuzefpolskaya M, Allemann Y, Messerli F. Flash pulmonary edema. Prog Cardiovasc Dis. 2009;52:249–59.PubMedCrossRefGoogle Scholar
  24. 24.
    Cohn JN. Vasodilator therapy for heart failure. Circulation. 1973;48:5–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cohn JN. Structural basis for heart failure. Circulation. 1995;91:2504–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Cohn JN. Is activation of the renin – angiotensin system hazardous to your health? Eur Heart J. 2011;32:2096–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Sica DA. Hyponatremia and heart failure—treatment considerations. Congest Heart Fail. 2006;12:55–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Oren RM. Hyponatremia in congestive heart failure. Am J Cardiol. 2005;95:2–7.CrossRefGoogle Scholar
  30. 30.
    Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides. 2011;32:1551–65.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kumar R, Thomas CM, Yong QC, Chen W, Baker KM. The intracrine renin-angiotensin system. Clin Sci (Lond). 2012;123:273–84.CrossRefGoogle Scholar
  32. 32.
    Hitom H, Liu G, Nishiyama A. Role of (pro)renin receptor in cardiovascular cells from the aspect of signaling. Front Biosci (Elite Ed). 2010;2:1246–9.CrossRefGoogle Scholar
  33. 33.
    Danser AHJ, Batenburg WW, van Esch JHM. Prorenin and the (pro)renin receptor: an update. Nephrol Dial Transplant. 2007;22:1288–92.CrossRefGoogle Scholar
  34. 34.
    Kaschina E. T. U. Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press. 2003;12:70–88.PubMedCrossRefGoogle Scholar
  35. 35.
    de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.PubMedGoogle Scholar
  36. 36.
    van de Wal RMA, Plokker HWM, Lok DJA, et al. Determinants of increased angiotensin II levels in severe chronic heart failure patients despite ACE inhibition. Int J Cardiol. 2006;106:367–72.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolny A, Clozel JP, Rein J, et al. Functional and biochemical analysis of angiotensin II-forming pathways in the human heart. Circ Res. 1997;80:219–27.PubMedCrossRefGoogle Scholar
  38. 38.
    Azizi M, Menard J. Combined blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Circulation. 2004;109:2492–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Luetscher JA, Johnson BB. Observations on the sodium-retaining corticoid in the urine of children and adults in relation to sodium balance and edema. J Clin Invest. 1954;33:1441–6.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Davis J, Johnston C, Howards S, Wright F. Humoral factors in the regulation of renal sodium excretion. Fed Proc. 1967;26:60–9.PubMedGoogle Scholar
  41. 41.
    Sigurdsson A, Swedberg K. Neurohormonal activation and congestive heart failure: today’s experience with ACE inhibitors and rationale for their use. Eur Heart J. 1995;16:65–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Weber K. Aldosterone in congestive heart failure. N Engl J Med. 2001;345:1689–97.PubMedCrossRefGoogle Scholar
  43. 43.
    Qin W, Rudolph AE, Bond BR, et al. Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res. 2003;93:69–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Vecchio LD, Procaccio M, Vigano S, Cusi D. Mechanisms of disease: the role of aldosterone in kidney damage and clinical benefits of its blockade. Nat Clin Pract Nephrol. 2007;3:42–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Huang S, Zhang A, Ding G, Chen R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol. 2009;296:F1323–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Sica D, Gradman AH, Lederballe O, Kolloch RE, Zhang J, Keefe DL. Long-term safety and tolerability of the oral direct renin inhibitor aliskiren with optional add-on hydrochlorothiazide in patients with hypertension: a randomized, open-label, parallel-group, multicentre, dose-escalation study with an extension phase. Clin Drug Investig. 2011;31:825–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Flack JM, Yadao AM, Purkayastha D, Samuel R, White WB. Comparison of the effects of aliskiren/valsartan in combination versus valsartan alone in patients with Stage 2 hypertension. J Am Soc Hypertens. 2012;6:142–51.PubMedCrossRefGoogle Scholar
  48. 48.
    Krum H, Massie B, Abraham WT, et al. Direct renin inhibition in addition to or as an alternative to angiotensin converting enzyme inhibition in patients with chronic systolic heart failure: rationale and design of the Aliskiren Trial to Minimize OutcomeS in Patients with HEart failuRE (ATMOSPHERE) study. Eur J Heart Fail. 2011;13:107–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Gheorghiade M, Albaghdadi M, Zannad F, et al. Rationale and design of the multicentre, randomized, double-blind, placebo-controlled Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT). Eur J Heart Fail. 2011;13:100–6.PubMedCrossRefGoogle Scholar
  50. 50.
    McMurray JJV, Abraham WT, Dickstein K, Kober L, Massie BM, Krum H. Aliskiren, ALTITUDE, and the implications for ATMOSPHERE. Eur J Heart Fail. 2012;14:341–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Jessup M, et al. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.PubMedCrossRefGoogle Scholar
  52. 52.
    Arnold JMO, Liu P, Demers C, et al. Canadian cardiovascular society consensus conference recommendations on heart failure 2006: diagnosis and management. Can J Cardiol. 2006;22:23–45.PubMedCrossRefGoogle Scholar
  53. 53.
    Dickstein K, Cohen-Solal A, et al. Corrigendum to ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. Eur Heart J. 2008;29:2388–442.PubMedCrossRefGoogle Scholar
  54. 54.
    Group TCTS. Effects of enalapril on mortality in severe congestive heart failure. N Engl J Med. 1987;316:1429–35.CrossRefGoogle Scholar
  55. 55.
    The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302.CrossRefGoogle Scholar
  56. 56.
    Garg R, Yusuf S, Bussmann WD, et al. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA. 1995;273:1450–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Flather MD, Yusuf S, Køber L, et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. Lancet. 2000;355:1575–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Heran B, Musini V, Bassett K, Taylor R, Wright J. Angiotensin receptor blockers for heart failure. Cochrane Database Syst Rev 2012;4:CD003040.Google Scholar
  59. 59.
    Makani H, Bangalore S, Desouza KA, et al. Efficacy and safety of dual blockade of the renin-angiotensin system: a meta-analysis of randomized trials. BMJ. 2013;346:f360.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Butler J, Ezekowitz JA, Collins SP, et al. Update on aldosterone antagonists use in heart failure with reduced left ventricular ejection fraction heart failure society of America guidelines committee. J Card Fail. 2012;18:265–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol. 2005;46:e1–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Yamaji M, Tsutamoto T, Kawahara C, Nishiyama K, Yamamoto T, Fujii M, et al. Effect of eplerenone versus spironolactone on cortisol and hemoglobin A(c) levels in patients with chronic heart failure. Am Heart J. 2010;160:915–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Ezekowitz JA, McAlister FA. Aldosterone blockade and left ventricular dysfunction: a systematic review of randomized clinical trials. Eur Heart J. 2009;30:469–77.PubMedCrossRefGoogle Scholar
  64. 64.
    Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.PubMedCrossRefGoogle Scholar
  65. 65.
    Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.PubMedCrossRefGoogle Scholar
  66. 66.
    Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Boccanelli A, Mureddu GF, Cacciatore G, et al. Anti-remodelling effect of canrenone in patients with mild chronic heart failure (AREA IN-CHF study): final results. Eur J Heart Fail. 2009;11:68–76.PubMedCrossRefGoogle Scholar
  68. 68.
    Schrier RW, Berl T, Anderson RJ. Osmotic and nonosmotic control of vasopressin release. Am J Physiol Renal Physiol. 1979;236:F321–32.Google Scholar
  69. 69.
    McKie PM, Schirger JA, Costello-Boerrigter LC, et al. Impaired natriuretic and renal endocrine response to acute volume expansion in pre-clinical systolic and diastolic dysfunction. J Am Coll Cardiol. 2011;58:2095–103.PubMedCrossRefGoogle Scholar
  70. 70.
    Mullens W, Tang WHW. The early intertwining of the heart and the kidney through an impaired natriuretic response to acute volume expansion. J Am Coll Cardiol. 2011;58:2104–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Abraham WT, Trupp RJ, Jarjoura D. Nesiritide in acute decompensated heart failure: a pooled analysis of randomized controlled trials. Clin Cardiol. 2010;33:484–9.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.PubMedCrossRefGoogle Scholar
  73. 73.
    Sonnenblick M, Friedlander Y, Rosin A. Diuretic-induced severe hyponatremia. Review and analysis of 129 reported patients. Chest. 1993;103:601–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Miller W, Skouri H. Chronic systolic heart failure, guideline-directed medical therapy, and systemic hypotension-less pressure but maybe more risk (does this clinical scenario need more discussion?). J Card Fail. 2009;15:101–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81.PubMedCrossRefGoogle Scholar
  77. 77.
    Ito H, Ishii K, Kihara H, et al. Adding thiazide to a renin-angiotensin blocker improves left ventricular relaxation and improves heart failure in patients with hypertension. Hypertens Res. 2011;35:93–9.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Deswal A, Richardson P, Bozkurt B, Mann DL. Results of the randomized aldosterone antagonism in heart failure with preserved ejection fraction trial (RAAM-PEF). J Card Fail. 2011;17:634–42.PubMedCrossRefGoogle Scholar
  79. 79.
    Krum H, Elsik M, Schneider HG, et al. Relation of peripheral collagen markers to death and hospitalization in patients with heart failure and preserved ejection fraction/clinical perspective. Circ Heart Fail. 2011;4:561–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction/clinical perspective. Circulation. 2011;124:164–74.PubMedCrossRefGoogle Scholar
  81. 81.
    Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–69.PubMedCrossRefGoogle Scholar
  82. 82.
    Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflügers Arch Eur J Physiol. 2010;459:923–39.CrossRefGoogle Scholar
  83. 83.
    Ontkean M, Gay R, Greenberg B. Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ Res. 1991;69:1088–96.PubMedCrossRefGoogle Scholar
  84. 84.
    Drexler H, Hayoz D, Münzel T, et al. Endothelial function in chronic congestive heart failure. Am J Cardiol. 1992;69:1596–601.PubMedCrossRefGoogle Scholar
  85. 85.
    Bank AJ, Lee PC, Kubo SH. Endothelial dysfunction in patients with heart failure: relationship to disease severity. J Card Fail. 2000;6:29–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Gwathmey TM, Alzayadneh EM, Pendergrass KD, Chappell MC. Review: novel roles of nuclear angiotensin receptors and signaling mechanisms. Am J Physiol Regul Integr Comp Physiol. 2012;302:R518–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Internal MedicineTB 172, University of California, DavisSacramentoUSA
  2. 2.Department of Internal MedicineUniversity of California, DavisSacramentoUSA

Personalised recommendations