Skip to main content

Physiology and Host Immune Responses of the Nose and Sinuses

  • Chapter
  • First Online:

Abstract

The nose and converging structures have several critical functions that are often trivialized until symptoms persist and interfere with the patient’s daily activities. The nose is the body’s heating, ventilation, and air conditioning (HVAC) system, as it humidifies, filters, and conditions air. These functions protect the lungs from an influx of aeroallergens, air particulates, and other potential deleterious air pollutants. The nasopharynx is colonized with normal flora that acts as commensal organisms to prevent colonization of the host with more pathogenic organisms, thereby preventing disease. There are several natural protective mechanisms in the nose that are part of the innate immune response. Because the nasal epithelium provides a weak protective barrier, innate immunity plays a very important role to prevent infection and other pathologic inflammatory responses. The humoral adaptive immune response plays an important role in combating infection as well as eliciting specific IgE-mediated responses in susceptible individuals. When one or more of these processes break down, chronic rhinosinusitis (CRS), characterized by persistent inflammation of the mucosa in the nose and paranasal sinuses, can result. Most cases of chronic rhinosinusitis are idiopathic. Proposed mechanisms for CRS included obstruction of the osteomeatal complexes, impaired mucociliary transport, atopy, microbial resistance, and biofilm formation. Correct diagnosis and appropriate treatment of patients with allergic, nonallergic, or mixed rhinitis to prevent unchecked nasal inflammation will often prevent or ameliorate the progression to chronic rhinosinusitis. Future research investigating the pathogenesis and mechanism(s) of CRS will provide better opportunities for developing novel therapies to improve our management of this common clinical condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jankowski R. Revisiting human nose anatomy: phylogenic and ontogenic perspectives. Laryngoscope. 2011;121(11):2461–7.

    Article  PubMed  Google Scholar 

  2. Marquez S, et al. Development of the ethmoid sinus and extramural migration: the anatomical basis of this paranasal sinus. Anat Rec (Hoboken). 2008;291(11):1535–53.

    Article  Google Scholar 

  3. Cave AJ. Observations on the platyrrhine nasal fossa. Am J Phys Anthropol. 1967;26(3):277–88.

    Article  CAS  PubMed  Google Scholar 

  4. Sander K. Ernst Haeckel’s ontogenetic recapitulation: irritation and incentive from 1866 to our time. Ann Anat. 2002;184(6):523–33.

    Article  PubMed  Google Scholar 

  5. Keir J. Why do we have paranasal sinuses? J Laryngol Otol. 2009;123(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sahin-Yilmaz A, Naclerio RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc. 2011;8(1):31–9.

    Article  PubMed  Google Scholar 

  7. Biedlingmaier JF, et al. Histopathology and CT analysis of partially resected middle turbinates. Laryngoscope. 1996;106(1 Pt 1):102–4.

    Article  CAS  PubMed  Google Scholar 

  8. Feron F, et al. New techniques for biopsy and culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg. 1998;124(8):861–6.

    Article  CAS  PubMed  Google Scholar 

  9. Leopold DA, et al. Anterior distribution of human olfactory epithelium. Laryngoscope. 2000;110(3 Pt 1):417–21.

    Article  CAS  PubMed  Google Scholar 

  10. Bodino C, et al. Surgical anatomy of the turbinal wall of the ethmoidal labyrinth. Rhinology. 2004;42(2):73–80.

    CAS  PubMed  Google Scholar 

  11. Doorly D, et al. Experimental investigation of nasal airflow. Proc Inst Mech Eng H. 2008;222(4):439–53.

    Article  CAS  PubMed  Google Scholar 

  12. Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol. 2008;163(1–3):100–10.

    Article  CAS  PubMed  Google Scholar 

  13. Clarke RW, Jones AS. Nasal airflow receptors: the relative importance of temperature and tactile stimulation. Clin Otolaryngol Allied Sci. 1992;17(5):388–92.

    Article  CAS  PubMed  Google Scholar 

  14. Salman SD, et al. Nasal resistance: description of a method and effect of temperature and humidity changes. Ann Otol Rhinol Laryngol. 1971;80(5):736–43.

    CAS  PubMed  Google Scholar 

  15. Cole P. Nasal and oral airflow resistors. Site, function, and assessment. Arch Otolaryngol Head Neck Surg. 1992;118(8):790–3.

    Article  CAS  PubMed  Google Scholar 

  16. Latte J, Taverner D. Opening the nasal valve with external dilators reduces congestive symptoms in normal subjects. Am J Rhinol. 2005;19(2):215–9.

    PubMed  Google Scholar 

  17. Yu S, et al. Influence of nasal structure on the distribution of airflow in nasal cavity. Rhinology. 2008;46(2):137–43.

    PubMed  Google Scholar 

  18. Lindemann J, et al. A numerical simulation of intranasal air temperature during inspiration. Laryngoscope. 2004;114(6):1037–41.

    Article  PubMed  Google Scholar 

  19. Lindemann J, et al. Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci. 2002;27(3):135–9.

    Article  CAS  PubMed  Google Scholar 

  20. Pless D, et al. Numerical simulation of airflow patterns and air temperature distribution during inspiration in a nose model with septal perforation. Am J Rhinol. 2004;18(6):357–62.

    PubMed  Google Scholar 

  21. Fonseca MT, et al. Effects of physical exercise in nasal volume. Braz J Otorhinolaryngol. 2006;72(2):256–60.

    PubMed  Google Scholar 

  22. Fonseca MT, Voegels RL, Pinto KM. Evaluation of nasal volume by acoustic rhinometry before and after physical exercise. Am J Rhinol. 2006;20(3):269–73.

    Article  PubMed  Google Scholar 

  23. Svensson S, Olin AC, Hellgren J. Increased net water loss by oral compared to nasal expiration in healthy subjects. Rhinology. 2006;44(1):74–7.

    PubMed  Google Scholar 

  24. McNicholas WT, Coffey M, Boyle T. Effects of nasal airflow on breathing during sleep in normal humans. Am Rev Respir Dis. 1993;147(3):620–3.

    Article  CAS  PubMed  Google Scholar 

  25. Rooker DW, Jackson RT. The effects of certain drugs, cervical sympathetic stimulation and section on nasal patency. Ann Otol Rhinol Laryngol. 1969;78(2):403–14.

    CAS  PubMed  Google Scholar 

  26. Mirza N, Kroger H, Doty RL. Influence of age on the ‘nasal cycle’. Laryngoscope. 1997;107(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  27. Eccles R, Reilly M, Eccles KS. Changes in the amplitude of the nasal cycle associated with symptoms of acute upper respiratory tract infection. Acta Otolaryngol. 1996;116(1):77–81.

    Article  CAS  PubMed  Google Scholar 

  28. Jafek BW. Ultrastructure of human nasal mucosa. Laryngoscope. 1983;93(12):1576–99.

    Article  CAS  PubMed  Google Scholar 

  29. Cohen NA. Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl. 2006;196:20–6.

    PubMed  Google Scholar 

  30. Fokkens WJ, Scheeren RA. Upper airway defence mechanisms. Paediatr Respir Rev. 2000;1(4):336–41.

    Article  CAS  PubMed  Google Scholar 

  31. Wiesmiller K, et al. The impact of expiration on particle deposition within the nasal cavity. Clin Otolaryngol Allied Sci. 2003;28(4):304–7.

    Article  CAS  PubMed  Google Scholar 

  32. Rubin BK. Physiology of airway mucus clearance. Respir Care. 2002;47(7):761–8.

    PubMed  Google Scholar 

  33. Ali MS, Pearson JP. Upper airway mucin gene expression: a review. Laryngoscope. 2007;117(5):932–8.

    Article  CAS  PubMed  Google Scholar 

  34. Green A, et al. The effect of temperature on nasal ciliary beat frequency. Clin Otolaryngol Allied Sci. 1995;20(2):178–80.

    Article  CAS  PubMed  Google Scholar 

  35. Mallants R, Jorissen M, Augustijns P. Effect of preservatives on ciliary beat frequency in human nasal epithelial cell culture: single versus multiple exposure. Int J Pharm. 2007;338(1–2):64–9.

    Article  CAS  PubMed  Google Scholar 

  36. Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngol Head Neck Surg. 2004;130(1):131–41.

    Article  PubMed  Google Scholar 

  37. Chiu T, Dunn JS. An anatomical study of the arteries of the anterior nasal septum. Otolaryngol Head Neck Surg. 2006;134(1):33–6.

    Article  PubMed  Google Scholar 

  38. Hosemann W, et al. Histochemical detection of lymphatic drainage pathways in the middle nasal meatus. Rhinology. 1998;36(2):50–4.

    CAS  PubMed  Google Scholar 

  39. Baraniuk JN, et al. Gastrin-releasing peptide in human nasal mucosa. J Clin Invest. 1990;85(4):998–1005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sarin S, et al. The role of the nervous system in rhinitis. J Allergy Clin Immunol. 2006;118(5):999–1016.

    Article  PubMed  Google Scholar 

  41. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012;166(2):510–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Keh SM, et al. The menthol and cold sensation receptor TRPM8 in normal human nasal mucosa and rhinitis. Rhinology. 2011;49(4):453–7.

    CAS  PubMed  Google Scholar 

  43. Baroody FM, et al. Nasal ocular reflexes and eye symptoms in patients with allergic rhinitis. Ann Allergy Asthma Immunol. 2008;100(3):194–9.

    Article  PubMed  Google Scholar 

  44. Baroody FM, et al. Nasal challenge with allergen leads to maxillary sinus inflammation. J Allergy Clin Immunol. 2008;121(5):1126–32.e7.

    Article  CAS  PubMed  Google Scholar 

  45. Assanasen P, et al. Elevation of the nasal mucosal surface temperature after warming of the feet occurs via a neural reflex. Acta Otolaryngol. 2003;123(5):627–36.

    Article  PubMed  Google Scholar 

  46. Corren J. Allergic rhinitis and asthma: how important is the link? J Allergy Clin Immunol. 1997;99(2):S781–6.

    Article  CAS  PubMed  Google Scholar 

  47. Korsgren M, et al. Secretoneurin is released into human airways by topical histamine but not capsaicin. Allergy. 2005;60(4):459–63.

    Article  CAS  PubMed  Google Scholar 

  48. Borum P. Nasal methacholine challenge. A test for the measurement of nasal reactivity. J Allergy Clin Immunol. 1979;63(4):253–7.

    Article  CAS  PubMed  Google Scholar 

  49. Baraniuk JN, et al. Neuropeptide Y (NPY) in human nasal mucosa. Am J Respir Cell Mol Biol. 1990;3(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  50. Mellert TK, et al. Characterization of the immune barrier in human olfactory mucosa. Otolaryngol Head Neck Surg. 1992;106(2):181–8.

    CAS  PubMed  Google Scholar 

  51. Bernstein JA, et al. Olfactory receptor gene polymorphisms and nonallergic vasomotor rhinitis. J Asthma. 2008;45(4):287–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gaillard I, Rouquier S, Giorgi D. Olfactory receptors. Cell Mol Life Sci. 2004;61(4):456–69.

    Article  CAS  PubMed  Google Scholar 

  53. Hasin-Brumshtein Y, Lancet D, Olender T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet. 2009;25(4):178–84.

    Article  CAS  PubMed  Google Scholar 

  54. Rahayel S, Frasnelli J, Joubert S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: a meta-analysis. Behav Brain Res. 2012;231(1):60–74.

    Article  PubMed  Google Scholar 

  55. Hull MW, Chow AW. Indigenous microflora and innate immunity of the head and neck. Infect Dis Clin North Am. 2007;21(2):265–82, v.

    Article  PubMed  Google Scholar 

  56. Baroody FM. Mucociliary transport in chronic rhinosinusitis. Clin Allergy Immunol. 2007;20:103–19.

    PubMed  Google Scholar 

  57. Bernstein JA. Allergic rhinitis. Helping patients lead an unrestricted life. Postgrad Med. 1993;93(6):124–8, 131–2.

    CAS  PubMed  Google Scholar 

  58. Tan BK, Schleimer RP, Kern RC. Perspectives on the etiology of chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2010;18(1):21–6.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Van Cauwenberge P, Van Hoecke H, Bachert C. Pathogenesis of chronic rhinosinusitis. Curr Allergy Asthma Rep. 2006;6(6):487–94.

    Article  PubMed  Google Scholar 

  60. Bachert C, et al. Role of staphylococcal superantigens in airway disease. Chem Immunol Allergy. 2007;93:214–36.

    Article  CAS  PubMed  Google Scholar 

  61. Bachert C, et al. Staphylococcus aureus enterotoxins as immune stimulants in chronic rhinosinusitis. Clin Allergy Immunol. 2007;20:163–75.

    CAS  PubMed  Google Scholar 

  62. Conley DB, et al. Superantigens and chronic rhinosinusitis: skewing of T-cell receptor V beta-distributions in polyp-derived CD4+ and CD8+ T cells. Am J Rhinol. 2006;20(5):534–9.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Conley DB, et al. Superantigens and chronic rhinosinusitis II: analysis of T-cell receptor V beta domains in nasal polyps. Am J Rhinol. 2006;20(4):451–5.

    Article  PubMed  Google Scholar 

  64. Patou J, et al. Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. J Allergy Clin Immunol. 2008;121(1):110–5.

    Article  CAS  PubMed  Google Scholar 

  65. Seiberling KA, et al. Superantigens and chronic rhinosinusitis: detection of staphylococcal exotoxins in nasal polyps. Laryngoscope. 2005;115(9):1580–5.

    Article  PubMed  Google Scholar 

  66. Seiberling KA, Grammer L, Kern RC. Chronic rhinosinusitis and superantigens. Otolaryngol Clin North Am. 2005;38(6):1215–36, ix.

    Article  PubMed  Google Scholar 

  67. Van Zele T, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004;114(4):981–3.

    Article  PubMed  Google Scholar 

  68. Van Zele T, et al. Detection of enterotoxin DNA in Staphylococcus aureus strains obtained from the middle meatus in controls and nasal polyp patients. Am J Rhinol. 2008;22(3):223–7.

    Article  PubMed  Google Scholar 

  69. Ponikau JU, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc. 1999;74(9):877–84.

    Article  CAS  PubMed  Google Scholar 

  70. Sasama J, et al. New paradigm for the roles of fungi and eosinophils in chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2005;13(1):2–8.

    Article  PubMed  Google Scholar 

  71. Shin SH, et al. Chronic rhinosinusitis: an enhanced immune response to ubiquitous airborne fungi. J Allergy Clin Immunol. 2004;114(6):1369–75.

    Article  CAS  PubMed  Google Scholar 

  72. Ebbens FA, Fokkens WJ. The mold conundrum in chronic rhinosinusitis: where do we stand today? Curr Allergy Asthma Rep. 2008;8(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  73. Kern RC, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. Am J Rhinol. 2008;22(6):549–59.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Richer SL, et al. Epithelial genes in chronic rhinosinusitis with and without nasal polyps. Am J Rhinol. 2008;22(3):228–34.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Tieu DD, Kern RC, Schleimer RP. Alterations in epithelial barrier function and host defense responses in chronic rhinosinusitis. J Allergy Clin Immunol. 2009;124(1):37–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Vroling AB, Fokkens WJ, van Drunen CM. How epithelial cells detect danger: aiding the immune response. Allergy. 2008;63(9):1110–23.

    Article  CAS  PubMed  Google Scholar 

  77. Eckert RL, et al. S100 proteins in the epidermis. J Invest Dermatol. 2004;123(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  78. Claeys S, et al. Human beta-defensins and toll-like receptors in the upper airway. Allergy. 2003;58(8):748–53.

    Article  CAS  PubMed  Google Scholar 

  79. Dong Z, Yang Z, Wang C. Expression of TLR2 and TLR4 messenger RNA in the epithelial cells of the nasal airway. Am J Rhinol. 2005;19(3):236–9.

    PubMed  Google Scholar 

  80. Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol. 2007;19(6):711–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Claeys S, et al. Nasal polyps in patients with and without cystic fibrosis: a differentiation by innate markers and inflammatory mediators. Clin Exp Allergy. 2005;35(4):467–72.

    Article  CAS  PubMed  Google Scholar 

  82. Wolk K, et al. IL-22 increases the innate immunity of tissues. Immunity. 2004;21(2):241–54.

    Article  CAS  PubMed  Google Scholar 

  83. Wolk K, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36(5):1309–23.

    Article  CAS  PubMed  Google Scholar 

  84. Ramanathan Jr M, Spannhake EW, Lane AP. Chronic rhinosinusitis with nasal polyps is associated with decreased expression of mucosal interleukin 22 receptor. Laryngoscope. 2007;117(10):1839–43.

    Article  CAS  PubMed  Google Scholar 

  85. Briot A, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Bernstein MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bernstein, J.A., Smith, A.M. (2014). Physiology and Host Immune Responses of the Nose and Sinuses. In: Chang, C., Incaudo, G., Gershwin, M. (eds) Diseases of the Sinuses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0265-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0265-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0264-4

  • Online ISBN: 978-1-4939-0265-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics