Skip to main content

On Partition Functions of Hyperbolic Three-Geometry and Associated Hilbert Schemes

  • Chapter
  • First Online:
  • 2378 Accesses

Abstract

Highest-weight representations of infinite-dimensional Lie algebras and Hilbert schemes of points are considered, together with the applications of these concepts to partition functions, which are most useful in physics. Partition functions (elliptic genera) are conveniently transformed into product expressions, which may inherit the homology properties of appropriate (poly)graded Lie algebras. Specifically, the role of (Selberg-type) Ruelle spectral functions of hyperbolic geometry in the calculation of partition functions and associated q-series is discussed. Examples of these connections in quantum field theory are considered (in particular, within the AdS/CFT correspondence), as the AdS3 case where one has Ruelle/Selberg spectral functions, whereas on the CFT side, partition functions and modular forms arise. These objects are here shown to have a common background, expressible in terms of Euler-Poincaré and Macdonald identities, which, in turn, describe homological aspects of (finite or infinite) Lie algebra representations. Finally, some other applications of modular forms and spectral functions (mainly related with the congruence subgroup of \(SL(2, \mathbb{Z})\)) to partition functions, Hilbert schemes of points, and symmetric products are investigated by means of homological and K-theory methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Vanishing theorems for the type (0, q) cohomology of locally symmetric spaces can be found in [15]. Again, if χ is acyclic (H(X; χ) = 0), the Ray-Singer norm (3) is a topological invariant: it does not depend on the choice of the metric on X and χ used in the construction. If X is a complex manifold (smooth C -manifold or topological space), then \(\mathbb{E} \rightarrow X\) is the induced complex (or smooth, or continuous) vector bundles. We write \({H}^{p,q}(X; \mathbb{E}) \simeq {H}^{0,q}(X{;\varLambda }^{p,0}X \otimes \mathbb{E})\) holonomic vector bundles Λ p, 0 X → X (see [15] for details).

  2. 2.

    The modular forms in question are the forms for the congruence subgroup of \(SL(2, \mathbb{Z})\), which is viewed as the group that leaves fixed one of the three nontrivial spin structures on an elliptic curve.

  3. 3.

    In the case when V has the one-dimensional odd degree part only (the bilinear form is (r, r) = 1 for a nonzero vector r ∈ V ) and the above condition is not satisfied, we can modify the definition of the corresponding super-Heisenberg algebra by changing the bilinear form on W as \((r \otimes {t}^{i},r \otimes {t}^{j}) =\delta _{i+j,0}\). The resulting algebra is termed an infinite-dimensional Clifford algebra. The above representation R is the fermionic Fock space in physics and it can be modified as follows: the representation of the even degree part was realized as the space of polynomials of infinitely many variables; the Clifford algebra is realized on the exterior algebra \(R {=\varLambda }^{{\ast}}(\bigoplus _{j}\mathbb{Q}dp_{j})\) of a vector space with a basis of infinitely many vectors. For j > 0 we define rt j as an exterior product of dp j and rt j as an interior product of ∂ p j .

  4. 4.

    A fundamental example of \(\tilde{H}\varGamma _{N}\)-vector superbundles over X N (X compact) is the following: given a Γ-vector bundle V over X, consider the vector superbundle VV over X with the natural \(\mathbb{Z}_{2}\)-grading. One can endow the Nth outer tensor product (VV ) ⊠ N with a natural \(\tilde{H}\varGamma _{N}\)-equivariant vector superbundle structure over X N.

References

  1. Wang, W.: Equivariant K-theory, generalized symmetric products, and twisted Heisenberg algebra. Commun. Math. Phys. 234, 101–127 (2003). arXiv:math.QA/0104168v2

    Google Scholar 

  2. Filipkiewicz, R.P.: Four-dimensional geometries. Ph.D. thesis, University of Warwick (1984)

    Google Scholar 

  3. Wall, C.T.C.: Geometries and geometric structures in real dimension 4 and complex dimension 2. In: Geometry and Topology. Lectures Notes in Mathematics, vol. 1167, pp. 268–292. Springer, Berlin (1986)

    Google Scholar 

  4. Bytsenko, A.A., Cognola, G., Elizalde, E., Moretti, V., Zerbini, S.: Analytic Aspects of Quantum Fields. World Scientific, Singapore (2003)

    Book  Google Scholar 

  5. Thurston, W.: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6, 357–381 (1982)

    Google Scholar 

  6. Besse, A.: Geométrie Riemannianne Eu Dimension 4. Séminaire Arthur Besse, 1978/1979. Cedic/Fernand Nathan, Paris (1981)

    Google Scholar 

  7. Mostow, G.D.: Quasi-conformal mapping in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Etudes Sci. Publ. Math. 34, 53–104 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonora, L., Bytsenko, A.A.: Fluxes, brane charges and chern morphisms of hyperbolic geometry. Class. Quant. Grav. 23, 3895–3916 (2006). arXiv:hep-th/0602162

    Google Scholar 

  9. Bonora, L., Bytsenko, A.A.: Partition functions for quantum gravity, black holes, elliptic genera and Lie algebra homologies. Nucl. Phys. B 852, 508–537 (2011). arXiv:hep-th/1105.4571

    Google Scholar 

  10. Ray, D., Singer, I.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farber, M., Turaev, V.: Poincaré-reidemaister metric, Euler structures, and torsion. J. reine angew. Math. (Crelles Journal) 2000, 195–225 (2006)

    Google Scholar 

  12. Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84, 523–540 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bytsenko, A.A., Vanzo, L., Zerbini, S.: Ray-Singer torsion for a hyperbolic 3-manifold and asymptotics of Chern-Simons-Witten invariant. Nucl. Phys. B505, 641–659 (1997). arXiv:hep-th/9704035v2

    Google Scholar 

  14. Bytsenko, A.A., Vanzo, L., Zerbini, S.: Semiclassical approximation for Chern-Simons theory and 3-hyperbolic invariants. Phys. Lett. B459, 535–539 (1999). arXiv:hep-th/9906092v1

    Google Scholar 

  15. Williams, F.L.: Vanishing theorems for type (0, q) cohomology of locally symmetric spaces. Osaka J. Math. 18, 147–160 (1981)

    Google Scholar 

  16. Deitmar, A.: The Selberg trace formula and the Ruelle zeta function for compact hyperbolics. Abh. Math. Se. Univ. Hamburg 59, 101–106 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Perry, P., Williams, F.: Selberg zeta function and trace formula for the BTZ black hole. Int. J. Pure Appl. Math. 9, 1–21 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Bytsenko, A.A., Guimãraes, M.E.X., Williams, F.L.: Remarks on the spectrum and truncated heat Kernel of the BTZ black hole. Lett. Math. Phys. 79, 203–211 (2007). arXiv:hep-th/0609102

    Google Scholar 

  19. Bytsenko, A.A., Guimãraes, M.E.X.: Expository remarks on three-dimensional gravity and hyperbolic invariants. Class. Quantum Grav. 25, 228001 (2008). arXiv:hep-th/0809.5179

    Google Scholar 

  20. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  21. Nakajima, H.: Lectures on Hilbert Schemes of Points on Surface. AMS University Lectures Series, vol. 18. American Mathematical Society, Providence (1999) [MR 1711344 (2001b:14007)]

    Google Scholar 

  22. Göttsche, L.: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286, 193–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kac, V., Peterson, D.: Infinite dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kontsevich, M.: Enumeration of rational curves via torus actions. In: The Moduli Space of Curves (Texel Island, Netherlands, 1994). Progress in Mathematics, vol. 129, pp. 335–368. Birkhäuser Boston (1995). arXiv:hep-th/9405035v2 [MR: MR1363062 (97d:14077)]

    Google Scholar 

  25. Moerdijk, I.: Orbifolds as groupoids: an introduction. In: Orbifolds in Mathematics and Physics (Madison, 2001). Contemporary Mathematics, vol. 310. American Mathematical Society, Providence (2002). arXiv:math.DG/0203100v1 (205, MR 1 950 948)

    Google Scholar 

  26. Fogarty, J.: Algebraic families on an algebraic surface. Amer. J. Math. 90, 511–521 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fujiki, A.: On primitive symplectic compact Kähler v-manifolds of dimension four. In: Ueno, K. (ed.) Classification of Algebraic and Analytic Manifolds. Progress in Mathematics, vol. 39, pp. 71–125. Birkhäuser, Boston (1983)

    Google Scholar 

  28.  Beauville, A.: Complex Algebraic Surfaces. LMS Student Texts, vol. 34. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  29. Segal, G.: Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. 34, 129–151 (1968) [MR MR0234452 (38 # 2769)]

    Google Scholar 

  30. Lupercio, E., Uribe, B., Xicotencatl, M.A.: The loop orbifold of the symmetric product. J. Pure Appl. Algebra (ISSN 0022–4049) 211 293–306 (2007). arXiv:math.AT/0606573

    Google Scholar 

  31. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Academic, New York (1988)

    MATH  Google Scholar 

  32. Vafa, C., Witten, E.: A strong coupling test of S-duality. Nucl. Phys. B 431, 3–77 (1994). arXiv:hep-th/9408074v2

    Google Scholar 

  33. Grojnowski, I.: Instantons and affine algebras I: the Hilbert scheme and vertex operators. Math. Res. Lett. 3, 275–291 (1996). arXiv:alg-geom/9506020v1

    Google Scholar 

  34. Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  MathSciNet  Google Scholar 

  35. de Boer, J., Cheng, M.C.N., Dijkgraaf, R., Manschot, J., Verlinde, E.: A farey tail for attractor black holes. JHEP 0611 024 (2006). arXiv:hep-th/0608059

    Google Scholar 

  36. Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. Nucl. Phys. B 261 678–686 (1985)

    Article  MathSciNet  Google Scholar 

  37. Atiyah, M., Singer, I.M.: The index of elliptic operators: III. Ann. Math. 87 546–604 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kontsevich, M., Soibelman, Y.: Deformations of algebras over operads and Deligne’s conjecture. arXiv:math/0001151v2

    Google Scholar 

Download references

Acknowledgements

AAB would like to acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundaçao Araucaria (Parana, Brazil) for the financial support. EE’s research has been partly supported by MICINN (Spain), contract PR2011-0128 and projects FIS2006-02842 and FIS2010-15640, and by the CPAN Consolider Ingenio Project and by AGAUR (Generalitat de Catalunya), contract 2009SGR-994. EE’s research was done in part while visiting the Department of Physics and Astronomy, Dartmouth College, NH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Elizalde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bytsenko, A.A., Elizalde, E. (2014). On Partition Functions of Hyperbolic Three-Geometry and Associated Hilbert Schemes. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_5

Download citation

Publish with us

Policies and ethics