Skip to main content

On a Direct Uvarov-Chihara Problem and Some Extensions

  • Chapter
  • First Online:
  • 2367 Accesses

Abstract

In this paper, we analyze a perturbation of a nontrivial probability measure supported on an infinite subset on the real line, which consists on the addition of a time-dependent mass point. For the associated sequence of monic orthogonal polynomials, we study its dynamics with respect to the time parameter. In particular, we determine the time evolution of their zeros in the special case when the measure is semiclassical. We also study the dynamics of the Verblunsky coefficients, i.e., the recurrence relation coefficients of a polynomial sequence, orthogonal with respect to a nontrivial probability measure supported on the unit circle, induced from through the Szegő transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape while it travels at constant speed. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium.

References

  1. Álvarez-Nodarse, R., Marcellán, F., Petronilho J.: WKB approximation and Krall-type orthogonal polynomials. Acta Appl. Math. 54, 27–58 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, Y., Ismail, M.E.H.: Ladder operators and differential equations for orthogonal polynomials. J. Phys. A: Math. Gen. 30, 7817–7829 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chihara, T.S.: An Introduction to Orthogonal Polynomials, Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  4. Chihara, T.S.: Orthogonal polynomials and measures with end points masses. Rocky Mountain J. Math. 15, 705–719 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fermi, E., Pasta, J., Ulam, S.: Studies of Nonlinear Problemas, University of Chicago Press, Chicago (1965)

    Google Scholar 

  6. Flaschka, H.: Discrete and periodic illustrations of some aspects of the inverse method. Dynamical Systems, Theory and Applications (Rencontres, Battelle Seattle Research, Seattle, Washington, 1974). vol. 38, pp. 441–466. Lecture Notes in Physics (1975)

    Google Scholar 

  7. García-Lázaro, P., Marcellán, F., Tasis, C.: On a Szegő result: Generating sequences of orthogonal polynomials on the unit circle. In: Brezinski, C., et al, (ed.) Proceedings Erice International Symposium on Orthogonal Polynomials and Their Applications. IMACS Annals on Computer Application Mathematics, vol. 9, pp. 271–274. J. C. Baltzer AG, Basel (1991)

    Google Scholar 

  8. Ismail, M.E.H.: More on electrostatic models for zeros of orthogonal polynomials, Proceedings of the International Conference on Fourier Analysis and Applications (Kuwait, 1998). Numer. Funct. Anal. Optim. 21(1–2), 191–204 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ismail, M.E.H., Ma, W.-X.: Equations of motion for zeros of orthogonal polynomials related to the Toda lattices. Arab. J. Math. Sciences 17, 1–10 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Magnus, W., Winkler, S.: Hill’s Equation, Interscience Publishers John Wiley and Sons, New York (1966)

    MATH  Google Scholar 

  11. Marcellán, F., Maroni, P.: Sur l’adjonction d’une masse de Dirac à une forme regulière et semiclassique. Ann. Mat. Pura Appl (4) 162, 1–22 (1992)

    Google Scholar 

  12. Maroni, P.: Une théorie algébrique des polynômes orthogonaux: Applications aux polynômes orthogonaux semi-classiques. In: Brezinski, C., et.al (eds.) Orthogonal Polynomials and their Applications, Annals on Computing and Applied Mathematics vol. 9, pp. 98–130. J.C. Baltzer AG, Basel (1991)

    Google Scholar 

  13. McKean, H., Van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30, 217–274 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975a)

    Article  MATH  Google Scholar 

  15. Moser, J.: Finitely many mass points on the line under the influence of an exponential potential - an integrable system, Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974). vol. 38, pp. 467–497 Lecture Notes in Physics, Springer, Berlin (1975b)

    Google Scholar 

  16. Simon, B.: Orthogonal polynomials on the unit circle. 2 vols. Amererican Mathematical Society Colloquium Publications Series, vol. 54, American Mathematical Society, Providence Rhode Island (2005)

    Google Scholar 

  17. Szegő, G.: Orthogonal Polynomials, American Mathematical Society Colloquium Publications Series. vol. 23, 4th edn. American Mathematical Society, Providence, Rhode Island (1975)

    Google Scholar 

  18. Toda, M.: Theory of Nonlinear Lattices, Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  19. Van Moerbeke, P.: The spectrum of Jacobi matrices. Invent. Math. 37, 45–81 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Uvarov, V.B.: The connection between systems of polynomials orthogonal with respect to different distribution functions. USSR Comput. Math. Math. Phys. 9, 25–36 (1969)

    Article  Google Scholar 

  21. Vinet, L., Zhedanov, A.: An integrable system connected with the Chihara-Uvarov problem for orthogonal polynomials. J. Phys. A: Math. Gen. 31, 9579–9591 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of K. Castillo was supported by CNPq Program/Young Talent Attraction, Ministério da Ciência, Tecnologia e Inovação of Brazil, Project 370291/2013–1. The research of K. Castillo and F. Marcellán was supported by Dirección General de Investigación, Ministerio de Economía y Competitividad of Spain, Grant MTM2012–36732–C03–01. The research of L. Garza was supported by Conacyt (México) grant 156668 and PROMEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marcellán .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hari M. Srivastava

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castillo, K., Garza, L., Marcellán, F. (2014). On a Direct Uvarov-Chihara Problem and Some Extensions. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_25

Download citation

Publish with us

Policies and ethics