Skip to main content

Abstract

This work has a purpose to collect selected facts about the completely monotone (CM) functions that can be found in books and papers devoted to different areas of mathematics. We opted for lesser known ones and for those which may help in determining whether or not a given function is completely monotone. In particular, we emphasize the role of representation of a CM function as the Laplace transform of a measure, and we present and discuss a little-known connection with log-convexity. Some of presented methods are illustrated by several examples involving Gamma and related functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: A Handbook of Mathematical Functions. National Bureau of Standards, New York. http://people.math.sfu.ca/~cbm/aands/ (1964)

  2. Audenaert, K.M.R.: Trace inequalities for completely monotone functions and Bernstein functions. Linear Algebra Appl. 437, 601–611 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernstein, S.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1929)

    Article  Google Scholar 

  4. Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral: A Practical Introduction. Springer, New York (2000)

    Book  Google Scholar 

  5. Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, New York (2007)

    MATH  Google Scholar 

  6. Fasshauer, G.: Meshfree Approximation Methods with MATLAB. World Scientific Publishing, Hackensack (2007)

    MATH  Google Scholar 

  7. Feller, W.: On Müntz’ theorem and completely monotone functions. Am. Math. Monthly 75, 342–350 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II. Wiley, New York (1970)

    Google Scholar 

  9. Fink, A.M.: Kolmogorov-Landau inequalities for monotone functions. J. Math. Anal. Appl. 90, 251–258 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gil-Pelaez, J.: Note on the inversion theorem. Biometrika 38, 481–482 (1951)

    MATH  MathSciNet  Google Scholar 

  11. Guo, S., Srivastava, H.M.: A class of logarithmically completely monotonic functions. Appl. Math. Lett. 21, 1134–1141 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, S., Qi, F., Srivastava, H.M.: Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic. Integr. Transf. Spec. Funct. 18, 819–826 (2007)

    Article  MathSciNet  Google Scholar 

  13. Hausdorff, F.: Summationsmethoden und momentfolgen I. Math. Z. 9, 74–109 (1921)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hausdorff, F.: Momentprobleme fur̈ ein endliches intervall. Math. Z. 16, 220–248 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hewitt, E.: Integration by parts for Stieltjes integrals. Am. Math. Monthly 67, 419–423 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kimberling, C.H.: A probabilistic interpretation of complete monotonicity. Aequ. Math. 10, 152–164 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  17. Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer Series in Statistics. Springer, New York (2009)

    Google Scholar 

  18. Merkle, M.: Convexity, Schur-convexity and bounds for the Gamma function involving the Digamma function. Rocky Mountain J. Math. 28(3), 1053–1066 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merkle, M.: Conditions for convexity of a derivative and some applications to the Gamma function. Aequ. Math. 55, 273–280 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Merkle, M.: Representation of the error term in Jensen’s and some related inequalities with applications. J. Math. Anal. Appl. 231, 76–90 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Merkle, M.: Reciprocally convex functions. J. Math. Anal. Appl. 293, 210–218 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Merkle, M.: Convexity in the theory of the Gamma function. Int. J. Appl. Math. Stat. 11, 103–117 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Merkle, M., Merkle, M.M.R.: Krull’s theory for the double gamma function. Appl. Math. Comput. 218, 935–943 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Miller, K.S., Samko, S.G.: Completely monotonic functions. Integr. Transf. Spec. Funct. 12, 389–402 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schilling, R., Song, R., Vondraček, Z.: Bernstein Functions: Theory and Applications. De Gruyter Studies in Mathematics, vol. 37. Walter de Gruyter & Co., Berlin (2010)

    Google Scholar 

  26. Widder, D.V.: Necessary and sufficient conditions for the representation of a function as a Laplace integral. Trans. Am. Math. Soc. 33, 851–892 (1931)

    Article  MathSciNet  Google Scholar 

  27. Widder, D.V.: The inversion of the Laplace integral and the related moment problem. Trans. Am. Math. Soc. 36, 107–200 (1934)

    Article  MathSciNet  Google Scholar 

  28. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Ministry of Education and Science of Serbia under projects 174024 and III 44006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Merkle .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Hari M. Srivastava

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merkle, M. (2014). Completely Monotone Functions: A Digest. In: Milovanović, G., Rassias, M. (eds) Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0258-3_12

Download citation

Publish with us

Policies and ethics