Skip to main content

Sugar, Sports Drinks, and Performance

  • Chapter
  • First Online:
Fructose, High Fructose Corn Syrup, Sucrose and Health

Part of the book series: Nutrition and Health ((NH))

Key Points

Sports drinks represent a convenient way to ingest water, sugar, and salt during physical activity, three nutrients that provide physiological and performance benefits.

In addition to improving various aspects of physical and cognitive performance, sugar ingestion during exercise also enhances voluntary fluid consumption, blunts the stress hormone response to intense and prolonged exercise, reduces subjective ratings of perceived exertion, and sustains the activity of aspects of immune response.

During strenuous physical activity, consuming a sports drink to replace the water and salts lost in sweat and to supply sugars to fuel active skeletal muscles and the central nervous system is perhaps the simplest, easiest, and least expensive way to improve performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rovell D. First in thirst. New York: AMACOM; 2006.

    Google Scholar 

  2. Murray R, Stofan J. Formulating carbohydrate-electrolyte drinks for optimal efficacy. In: Maughan RJ, Murray R, editors. Sports drinks: basic science and practical aspects. Boca Raton, FL: CRC Press; 2001. p. 197–223.

    Google Scholar 

  3. Passe DH. Physiological and psychological determinants of fluid intake. In: Maughan RJ, Murray R, editors. Sports drinks: basic science and practical aspects. Boca Raton: CRC Press; 2001. p. 45–88.

    Google Scholar 

  4. Lambert G, Shi X, Murray R. The gastrointestinal system. In: Farrell P, editor. ACSM’s Advanced exercise physiology. Philadelphia: Walters Kluwer/Lippincott Williams & Wilkins; 2012. p. 357–69.

    Google Scholar 

  5. Leiper J. Gastric emptying and intestinal absorption of fluids, carbohydrates, and electrolytes. In: Maughan M, editor. Sports drinks: basic science and practical aspects. Boca Raton: CRC Press; 2001. p. 89–128.

    Google Scholar 

  6. Hunt J, Thillainayagam A, Salim A, Carnaby S, Elliott E, Farthing M. Water and solute absorption from a new hypotonic oral rehydration solution: evaluation in human and animal perfusion models. Gut. 1992;33:1652–9.

    Article  CAS  PubMed  Google Scholar 

  7. IOM. Dietary reference intakes for energy, carbohydrates, fiber, Fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: National Academies Press; 2005. p. 1–1331.

    Google Scholar 

  8. Wasserman DH. Four grams of glucose. Amer J Physiol Endocrinol Metab. 2009;296(1):E11–21.

    Article  CAS  Google Scholar 

  9. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.

    Article  CAS  PubMed  Google Scholar 

  10. Thorens B. Sensing of glucose in the brain. Handb Exp Pharmacol. 2012;209:277–94.

    Article  CAS  PubMed  Google Scholar 

  11. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(Pt 8):1779–94.

    Article  CAS  PubMed  Google Scholar 

  12. Carter J, Jeukendrup A, Mann C, Jones D. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sports Exerc. 2004;36:1543–50.

    Article  PubMed  Google Scholar 

  13. Carter J, Jeukendrup A, Jones D. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc. 2004;36:2107–11.

    Article  CAS  PubMed  Google Scholar 

  14. Lane SC, Bird SR, Burke LM, Hawley JA. Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Appl Physiol Nutr Metab. 2013;38(2):134–9.

    Article  CAS  PubMed  Google Scholar 

  15. Whitham M, McKinney J. Effect of a carbohydrate mouthwash on running time-trial performance. J Sports Sci. 2007;25:1385–92.

    Article  PubMed  Google Scholar 

  16. Below P, Mora-Rodriguez R, Gonzalez-Alonso J, Coyle E. Fluid and carbohydrate ingestion independently improve performance during 1 h of intense exercise. Med Sci Sports Exerc. 1995;27(2):200–10.

    Article  CAS  PubMed  Google Scholar 

  17. Watson P, Shirreffs S, Maughan R. Effect of dilute CHO beverages on performance in cool and warm environments. Med Sci Sports Exerc. 2012;44(2):336–43.

    Article  CAS  PubMed  Google Scholar 

  18. Burcelin R. The gut-brain axis: a major glucoregulatory player. Diabetes Metab. 2010;36(3):S54–8.

    Article  CAS  PubMed  Google Scholar 

  19. Mace O, Marshall F. Gut chemosensing and the regulation of nutrient absorption and energy supply. J Anim Sci. 2013;91:1932–45.

    Article  CAS  PubMed  Google Scholar 

  20. Hargreaves M. The metabolic systems: carbohydrate metabolism. In: Farrell P, editor. ACSM’s advanced exercise physiology. 2nd ed. Philadelphia: Wolters Kluwer/Lipponcott Williams & Wilkins; 2012. p. 379–91.

    Google Scholar 

  21. Loucks A. The endocrine system: integrated influences on metabolism, growth, and reproduction. In: Farrell P, editor. ACSM’s advanced exercise physiology. 2nd ed. Philadelphia: Wolters Kluwer/Lipponcott Williams & Wilkins; 2012. p. 466–506.

    Google Scholar 

  22. Jeukendrup A. Carbohydrate intake during exercise and performance. Nutrition. 2004;20:667–77.

    Google Scholar 

  23. Jentjens R, Achten J, Jeukendrup A. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc. 2004;36(9):1551–8.

    Article  CAS  PubMed  Google Scholar 

  24. Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316.

    Article  PubMed  Google Scholar 

  25. Winnick JJ, Davis JM, Welsh RS, Carmichael MD, Murphy EA, Blackmon JA. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med Sci Sports Exerc. 2005;37(2):306–15.

    Article  CAS  PubMed  Google Scholar 

  26. Welsh RS, Davis JM, Burke JR, Williams HG. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med Sci Sports Exerc. 2002;34(4):723–31.

    Article  PubMed  Google Scholar 

  27. Keith RE, O’Keeffe KA, Blessing DL, Wilson GD. Alterations in dietary carbohydrate, protein, and fat intake and mood state in trained female cyclists. Med Sci Sports Exerc. 1991;23(2):212–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kreider RB, Hill D, Horton G, Downes M, Smith S, Anders B. Effects of carbohydrate supplementation during intense training on dietary patterns, psychological status, and performance. Int J Sport Nutr. 1995;5(2):125–35.

    CAS  PubMed  Google Scholar 

  29. Krogh A, Lindhard J. The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J. 1920;14(3–4):290–363.

    CAS  PubMed  Google Scholar 

  30. Levine S, Gordon B, Derick C. Some changes in the chemical constituents of the blood following a marathon: with especial reference to the development of hypoglycemia. JAMA. 1924;82(22):1778–9.

    Article  CAS  Google Scholar 

  31. Gordon B, Kohn L, Levine S, Matton M, Scriver W, Whiting W. Sugar content of the blood in runners following a marathon race: with especial reference to the prevention of hypoglycemia. JAMA. 1925;83(7):508–9.

    Article  Google Scholar 

  32. Christensen OH, Hansen O. Arbeitsfahigkeit und ehrnahrung. Scand Arch Physiol. 1939;81:160.

    Article  Google Scholar 

  33. Brooke JD, Davies GJ, Green LF. The effects of normal and glucose syrup work diets on the performance of racing cyclists. J Sports Med. 1975;15:257–65.

    CAS  Google Scholar 

  34. Rodahl K, Miller HI, Issekutz B. Plasma free fatty acids in exercise. J Appl Physiol. 1964;19(3):489–92.

    CAS  PubMed  Google Scholar 

  35. Coyle E. Fluid and fuel intake during exercise. J Sports Sci. 2004;22(1):39–55.

    Article  PubMed  Google Scholar 

  36. Bergstrom J, Hultman E. Synthesis of muscle glycogen in man after glucose and fructose infusion. Acta Med Scand. 1967;182(1):93–107.

    Article  CAS  PubMed  Google Scholar 

  37. Ahlborg B, Bergstrom J, Brohult J, Ekelund L, Hultman E, Maschio G. Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand. 1967;71:140.

    Article  Google Scholar 

  38. Foster C, Costill D, Fink W. Effects of preexercise feedings on endurance performance. Med Sci Sports Exerc. 1979;11(1):1–5.

    CAS  Google Scholar 

  39. Pirnay F, Lacroix M, Mosora F, Luyckx A, Lefebvre P. Effect of glucose ingestion on energy substrate utilization during prolonged muscular exercise. Eur J Appl Physiol Occup Physiol. 1977;36(4):247–54.

    Article  CAS  PubMed  Google Scholar 

  40. Hargreaves M. Carbohydrates and exercise performance. Nutr Rev. 1996;54(4):S136–9.

    Article  CAS  PubMed  Google Scholar 

  41. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29 Suppl 1:S17–27.

    Article  PubMed  Google Scholar 

  42. Jeukendrup A, Brouns F, Wagenmakers AJ, Saris WH. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  43. Millard-Stafford M, Rosskopf LB, Snow TK, Hinson BT. Water versus carbohydrate-electrolyte ingestion before and during a 15-km run in the heat. Int J Sport Nutr. 1997;7(1):26–38.

    CAS  PubMed  Google Scholar 

  44. Kovacs E, Stegen J, Brouns F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J Appl Physiol. 1998;85:709–15.

    CAS  PubMed  Google Scholar 

  45. Davis JM, Burgess WA, Slentz CA, Bartoli WP, Pate RR. Effects of ingesting 6 and 12 % glucose/electrolyte beverages during prolong intermittent cycling in the heat. Eur J Appl Physiol. 1988;57:563–9.

    Article  CAS  Google Scholar 

  46. Murray R, Eddy DE, Murray TW, Seifert JG, Paul GL, Halaby GA. The effect of fluid and carbohydrate feedings during intermittent cycling exercise. Med Sci Sports Exerc. 1987;19(6):597–604.

    Article  CAS  PubMed  Google Scholar 

  47. Phillips SM, Turner AP, Sanderson MF, Sproule J. Beverage carbohydrate concentration influences the intermittent endurance capacity of adolescent team games players during prolonged intermittent running. Eur J Appl Physiol. 2012;112(3):1107–16.

    Article  CAS  PubMed  Google Scholar 

  48. Muckle D. Glucose syrup ingestion and team performance in soccer. Brit J Sports Med. 1973;7:340–3.

    Article  Google Scholar 

  49. Burke LM. New guidelines for carbohydrate intakes in sport from the International Olympic Committee. SCAN’s Pulse. 2012;31(3):7–11.

    Google Scholar 

  50. Smith JW, Pascoe DD, Passe DH, et al. Curvilinear dose–response relationship of carbohydrate (0–120 g*h-1) and performance. Med Sci Sports Exerc. 2013;45(2):336–41.

    Article  CAS  PubMed  Google Scholar 

  51. Rodriquez N, DiMarco N, Langley S. American college of sports medicine position stand: nutrition and athletic performance. Med Sci Sports Exerc. 2009;49(3):709–31.

    Google Scholar 

  52. Maughan RJ, Shirreffs SM. Nutrition for sports performance: issues and opportunities. Proc Nutr Soc. 2012;71(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  53. Murray B. The role of salt and glucose drinks in the marathon. Sports Med. 2007;37:4–6.

    Article  Google Scholar 

  54. Maughan RJ. Fundamentals of sports nutrition: applications to sports drinks. In: Maughan RJ, Murray R, editors. Sports drinks: basic science and practical aspects. Boca Raton, FL: CRC Press; 2001. p. 1–28.

    Google Scholar 

  55. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.

    Article  PubMed  Google Scholar 

  56. Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  57. Nicholas CW, Williams C, Lakomy HKA, Phillips G, Nowitz A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J Sports Sci. 1995;13:283–90.

    Article  CAS  PubMed  Google Scholar 

  58. Dougherty KA, Baker LB, Chow M, Kenney WL. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med Sci Sports Exerc. 2006;38(9):1650–8.

    Article  PubMed  Google Scholar 

  59. Ferrauti A, Weber K, Struder HK. Metabolic and ergogenic effects of carbohydrate and caffeine beverages in tennis. J Sports Med Phys Fitness. 1997;37:258–66.

    CAS  PubMed  Google Scholar 

  60. Vergauwen L, Brouns F, Hespel P. Carbohydrate supplementation improves stroke performance in tennis. Med Sci Sports Exerc. 1998;30(8):1289–95.

    Article  CAS  PubMed  Google Scholar 

  61. Peltier SL, Lepretre PM, Metz L, et al. Effects of pre-exercise, endurance and recovery designer sports drinks on performance during tennis tournament simulation. J Strength Cond Res. 2013;27:3076–83.

    Article  PubMed  Google Scholar 

  62. Ali A, Williams C. Carbohydrate ingestion and soccer skill performance during intermittent exercise. J Sports Sci. 2009;27(14):1499–508.

    Article  PubMed  Google Scholar 

  63. Russell M, Benton D, Kingsley M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J Sci Med Sport. 2012;15(4):348–54.

    Article  PubMed  Google Scholar 

  64. Guerra I, Chaves R, Barros T, Tirapegui J. The influence of fluid ingestion on performance of soccer players during a match. J Sports Sci Med. 2004;3:198–202.

    Google Scholar 

  65. Currell K, Conway S, Jeukendrup AE. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int J Sport Nutr Exerc Metab. 2009;19(1):34–46.

    PubMed  Google Scholar 

  66. Morrison DJ, O’Hara JP, King RF, Preston T. Quantitation of plasma 13C-galactose and 13C-glucose during exercise by liquid chromatography/isotope ratio mass spectrometry. Rapid Comm Mass Spec. 2011;25(17):2484–8.

    Article  CAS  Google Scholar 

  67. Leijssen DP, Saris WH, Jeukendrup AE, Wagenmakers AJ. Oxidation of exogenous [13C]galactose and [13C]glucose during exercise. J Appl Physiol. 1995;79(3):720–5.

    CAS  PubMed  Google Scholar 

  68. Burelle Y, Lamoureux MC, Peronnet F, Massicotte D, Lavoie C. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labelling. Brit J Nutr. 2006;96(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  69. Stannard SR, Hawke EJ, Schnell N. The effect of galactose supplementation on endurance cycling performance. Eur J Clin Nutr. 2009;63(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  70. Macdermid PW, Stannard S, Rankin D, Shillington D. A comparative analysis between the effects of galactose and glucose supplementation on endurance performance. Int J Sport Nutr Exerc Metab. 2012;22(1):24–30.

    CAS  PubMed  Google Scholar 

  71. Decombaz J, Jentjens R, Ith M, et al. Fructose and galactose enhance postexercise human liver glycogen synthesis. Med Sci Sports Exerc. 2011;43(10):1964–71.

    CAS  PubMed  Google Scholar 

  72. Shi X, Schedl HP, Summers RM, et al. Fructose transport mechanisms in humans. Gastroenterology. 1997;113(4):1171–9.

    Article  CAS  PubMed  Google Scholar 

  73. Schedl HP, Maughan RJ, Gisolfi CV. Intestinal absorption during rest and exercise: implications for formulating an oral rehydration solution (ORS). Proceedings of a roundtable discussion. Med Sci Sports Exerc. 1994;26(3):267–80.

    Article  CAS  PubMed  Google Scholar 

  74. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition. 2004;20(7–8):669–77.

    Article  CAS  PubMed  Google Scholar 

  75. Johnson RJ, Murray R. Fructose, exercise, and health. Curr Sports Med Reports. 2010;9(4):253–8.

    Article  Google Scholar 

  76. Jentjens RL, Underwood K, Achten J, Currell K, Mann CH, Jeukendrup AE. Exogenous carbohydrate oxidation rates are elevated after combined ingestion of glucose and fructose during exercise in the heat. J Appl Physiol. 2006;100(3):807–16.

    Article  CAS  PubMed  Google Scholar 

  77. Lecoultre V, Benoit R, Carrel G, et al. Fructose and glucose co-ingestion during prolonged exercise increased lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Amer J Clin Nutr. 2010;92:1071–9.

    Article  CAS  PubMed  Google Scholar 

  78. Achten J, Jentjens RL, Brouns F, Jeukendrup AE. Exogenous oxidation of isomaltulose is lower than that of sucrose during exercise in men. J Nutr. 2007;137:1143–8.

    CAS  PubMed  Google Scholar 

  79. Anastasiou CA, Kavouras SA, Koutsari C, et al. Effect of maltose-containing sports drinks on exercise performance. Int J Sport Nutr Exerc Metab. 2004;14(6):609–25.

    PubMed  Google Scholar 

  80. Hawley JA, Dennis SC, Nowitz A, Brouns F, Noakes TD. Exogenous carbohydrate oxidation from maltose and glucose ingested during prolonged exercise. Eur J Appl Physiol Occup Physiol. 1992;64(6):523–7.

    Article  CAS  PubMed  Google Scholar 

  81. Jentjens RL, Venables MC, Jeukendrup AE. Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol. 2004;96(4):1285–91.

    Article  CAS  PubMed  Google Scholar 

  82. Venables MC, Brouns F, Jeukendrup AE. Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. Med Sci Sports Exerc. 2008;40(9):1653–9.

    Article  CAS  PubMed  Google Scholar 

  83. Eijnde BO, Van Leemputte M, Brouns F, et al. No effects of oral ribose supplementation on repeated maximal exercise and de novo ATP resynthesis. J Appl Physiol. 2001;91(5):2275–81.

    CAS  PubMed  Google Scholar 

  84. Dhanoa TS, Housner JA. Ribose: more than a simple sugar? Curr Sports Med Rep. 2007;6(4):254–7.

    PubMed  Google Scholar 

  85. Nieman DC. Exercise immunology: nutritional countermeasures. Can J Appl Physiol. 2001;26(Suppl):S45–55.

    Article  CAS  PubMed  Google Scholar 

  86. Utter AC, Kang J, Nieman DC, Dumke CL, McAnulty SR, McAnulty LS. Carbohydrate attenuates perceived exertion during intermittent exercise and recovery. Med Sci Sports Exerc. 2007;39(5):880–5.

    Article  CAS  PubMed  Google Scholar 

  87. Nieman DC, Henson DA, Gojanovich G, et al. Influence of carbohydrate on immune function following 2 h cycling. Res Sports Med. 2006;14(3):225–37.

    Article  PubMed  Google Scholar 

  88. Nieman DC, Bishop NC. Nutritional strategies to counter stress to the immune system in athletes, with special reference to football. J Sports Sci. 2006;24(7):763–72.

    Article  PubMed  Google Scholar 

  89. Joesten MD, Castellion ME, Hogg JL. The world of chemistry: essentials. 4th ed. Belmont, CA: Thomson Brooks/Cole; 2007. p. 359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Murray Ph.D., F.A.C.S.M. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murray, R. (2014). Sugar, Sports Drinks, and Performance. In: Rippe, J. (eds) Fructose, High Fructose Corn Syrup, Sucrose and Health. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8077-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8077-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4899-8076-2

  • Online ISBN: 978-1-4899-8077-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics