Skip to main content

MicroRNAs in Stem Cells and Cancer Stem Cells

  • Chapter
  • First Online:
Book cover MicroRNA in Development and in the Progression of Cancer

Abstract

Cancer is currently a leading cause of death worldwide, taking millions of lives yearly. Estimates indicate that this tragic trend will continue and even increase over time (GLOBOCAN 2008 v2.0, http://globocan.iarc.fr). Currently, lung, liver, colon, and breast cancers are responsible for the majority of cancer deaths (Int J Cancer 132:1133–1145, 2013) and so a concerted effort is being made to find the mechanisms underlying carcinogenesis, disease progression, and chemotherapeutic resistance in order to uncover novel pathways that may be targeted by anticancer therapies. Evidence increasingly supports the hypothesis that cancers arise from stem cells as much as healthy tissues do. However, cancer stem cells are able to evade the growth programs imposed on normal stem cells, leading to disease. Specifically targeting cancer stem cells might prove to be an effective therapeutic strategy since this would eliminate the source of new cancer cells. Unfortunately, cancer stem cells are able to enter a dormant state in which they are resistant to standard therapies. Recent findings have indicated that microRNAs are critical regulators of many aspects of stem cell biology including entry and maintenance of the dormant state. Here, we discuss evidence supporting the cancer stem cell theory and how targeting of microRNA-dependent pathways might be used to coax cancer stem cells out of dormancy and into the path of chemotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay JSH, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v2.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10. 2010 (http://globocan.iarc.fr).

  2. Bray F, Ren JS, Masuyer E, Ferlay J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer. 2013;132:1133–45.

    Article  PubMed  CAS  Google Scholar 

  3. Uhr JW, Pantel K. Controversies in clinical cancer dormancy. Proc Natl Acad Sci U S A. 2011;108:12396–400.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Talmadge JE. Clonal selection of metastasis within the life history of a tumor. Cancer Res. 2007;67:11471–5.

    Article  PubMed  CAS  Google Scholar 

  5. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  6. Green BB, Taplin SH. Breast cancer screening controversies. J Am Board Fam Pract. 2003;16:233–41.

    Article  PubMed  Google Scholar 

  7. Mansi JL, Berger U, McDonnell T, Pople A, Rayter Z, Gazet JC, et al. The fate of bone marrow micrometastases in patients with primary breast cancer. J Clin Oncol. 1989;7:445–9.

    PubMed  CAS  Google Scholar 

  8. Habeck M. Bone-marrow analysis predicts breast-cancer recurrence. Mol Med Today. 2000;6:256–7.

    Article  PubMed  CAS  Google Scholar 

  9. Braun S, Auer D, Marth C. The prognostic impact of bone marrow micrometastases in women with breast cancer. Cancer Invest. 2009;27:598–603.

    Article  PubMed  CAS  Google Scholar 

  10. Banys M, Hartkopf AD, Krawczyk N, Becker S, Fehm T. Clinical implications of the detection of circulating tumor cells in breast cancer patients. Biomark Med. 2012;6:109–18.

    Article  PubMed  Google Scholar 

  11. Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth PW, Blumencranz PW, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569–75.

    Article  PubMed  CAS  Google Scholar 

  12. Oh HS, Moharita A, Potian JG, Whitehead IP, Livingston JC, Castro TA, et al. Bone marrow stroma influences transforming growth factor-beta production in breast cancer cells to regulate c-myc activation of the preprotachykinin-I gene in breast cancer cells. Cancer Res. 2004;64:6327–36.

    Article  PubMed  CAS  Google Scholar 

  13. Ramkissoon SH, Patel PS, Taborga M, Rameshwar P. Nuclear factor-kappaB is central to the expression of truncated neurokinin-1 receptor in breast cancer: implication for breast cancer cell quiescence within bone marrow stroma. Cancer Res. 2007;67:1653–9.

    Article  PubMed  CAS  Google Scholar 

  14. Rao G, Patel PS, Idler SP, Maloof P, Gascon P, Potian JA, et al. Facilitating role of preprotachykinin-I gene in the integration of breast cancer cells within the stromal compartment of the bone marrow: a model of early cancer progression. Cancer Res. 2004;64:2874–81.

    Article  PubMed  CAS  Google Scholar 

  15. Reddy BY, Greco SJ, Patel PS, Trzaska KA, Rameshwar P. RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc Natl Acad Sci U S A. 2009;106:4408–13.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, et al. ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev. 2009;23:1882–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011;71:1550–60.

    Article  PubMed  CAS  Google Scholar 

  18. Moharita AL, Taborga M, Corcoran KE, Bryan M, Patel PS, Rameshwar P. SDF-1alpha regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood. 2006;108:3245–52.

    Article  PubMed  CAS  Google Scholar 

  19. Patel SA, Ramkissoon SH, Bryan M, Pliner LF, Dontu G, Patel PS, et al. Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Sci Rep. 2012;2:906.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Naume B, Zhao X, Synnestvedt M, Borgen E, Russnes HG, Lingjaerde OC, et al. Presence of bone marrow micrometastasis is associated with different recurrence risk within molecular subtypes of breast cancer. Mol Oncol. 2007;1:160–71.

    Article  PubMed  Google Scholar 

  21. Riethdorf S, Wikman H, Pantel K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int J Cancer. 2008;123:1991–2006.

    Article  PubMed  CAS  Google Scholar 

  22. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453:306–13.

    Article  PubMed  CAS  Google Scholar 

  23. Miller JS, McCullar V, Punzel M, Lemischka IR, Moore KA. Single adult human CD34(+)/Lin-/CD38(-) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells. Blood. 1999;93:96–106.

    PubMed  CAS  Google Scholar 

  24. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157–68.

    Article  PubMed  CAS  Google Scholar 

  25. Liu K, Castillo MD, Murthy RG, Patel N, Rameshwar P. Tachykinins and hematopoiesis. Clin Chim Acta. 2007;385:28–34.

    Article  PubMed  CAS  Google Scholar 

  26. Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol. 2008;15:49–58.

    Article  PubMed  CAS  Google Scholar 

  27. Quelle FW. Cytokine signaling to the cell cycle. Immunol Res. 2007;39:173–84.

    Article  PubMed  CAS  Google Scholar 

  28. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10:8152–62.

    Article  PubMed  Google Scholar 

  29. Bos PD, Nguyen DX, Massague J. Modeling metastasis in the mouse. Curr Opin Pharmacol. 2010;10(5):571–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Robey PG. Series Introduction: Stem cells near the century mark. J Clin Invest. 2000;105:1489–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Eaves C, Eaves A. A fond farewell to Ernest A. McCulloch-A beacon who inspired generations of scientists and framed the foundation of modern stem cell biology. Exp Hematol. 2011;39:602–3.

    Article  PubMed  Google Scholar 

  32. Zon LI. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature. 2008;453:306–13.

    Article  PubMed  CAS  Google Scholar 

  33. Wallenfang MR, Matunis E. Orienting stem cells. Science. 2003;301:1490–1.

    Article  PubMed  CAS  Google Scholar 

  34. Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327:542–5.

    Article  PubMed  CAS  Google Scholar 

  35. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  PubMed  CAS  Google Scholar 

  36. Knoepfler PS. Deconstructing stem cell tumorigenicity: A roadmap to safe regenerative medicine. Stem Cells. 2009;27:1050–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Shevde N. Stem Cells: flexible friends. Nature. 2012;483:S22–S6.

    Article  PubMed  CAS  Google Scholar 

  38. Fuchs E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell. 2009;137:811–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001;414:98–104.

    Article  PubMed  CAS  Google Scholar 

  40. Chen T, Heller E, Beronja S, Oshimori N, Stokes N, Fuchs E. An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature. 2012;485:104–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Medema JP, Vermeulen L. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature. 2011;474:318–26.

    Article  PubMed  CAS  Google Scholar 

  42. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441:1068–74.

    Article  PubMed  CAS  Google Scholar 

  43. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432:324–31.

    Article  PubMed  CAS  Google Scholar 

  44. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  PubMed  CAS  Google Scholar 

  45. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  PubMed  CAS  Google Scholar 

  46. Lorico A, Rappa G. Phenotypic heterogeneity of breast cancer stem cells. J Oncol. 2011;2011:135039.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sette G, Salvati V, Memeo L, Fecchi K, Colarossi C, Di Matteo P, et al. EGFR inhibition abrogates leiomyosarcoma cell chemoresistance through inactivation of survival pathways and impairment of CSC potential. PLoS One. 2012;7:e46891.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Alison MR, Lin WR, Lim SM, Nicholson LJ. Cancer stem cells: in the line of fire. Cancer Treat Rev. 2012;38:589–98.

    Article  PubMed  CAS  Google Scholar 

  49. Valent P, Bonnet D, De Maria R, Lapidot T, Copland M, Melo JV, et al. Cancer stem cell definitions and terminology: the devil is in the details. Nat Rev Can. 2012;12:767–75.

    Article  CAS  Google Scholar 

  50. Gibbs KD Jr, Jager A, Crespo O, Goltsev Y, Trejo A, Richard CE, et al. Decoupling of tumor-initiating activity from stable immunophenotype in HoxA9-Meis1-driven AML. Cell Stem Cell. 2012;10:210–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Stechishin OD, Luchman HA, Ruan Y, Blough MD, Nguyen SA, Kelly JJ, et al. On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells. Neuro Oncol. 2013;15:198–207.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. van Deurzen CH, Lee AH, Gill MS, Menke-Pluijmers MB, Jager A, Ellis IO, et al. Metaplastic breast carcinoma: tumour histogenesis or dedifferentiation? J Pathol. 2011;224:434–7.

    Article  PubMed  CAS  Google Scholar 

  53. Dufour C, Cadusseau J, Varlet P, Surena AL, de Faria GP, Dias-Morais A, et al. Astrocytes reverted to a neural progenitor-like state with transforming growth factor alpha are sensitized to cancerous transformation. Stem Cells. 2009;27:2373–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Wu XZ, Chen D. Origin of hepatocellular carcinoma: role of stem cells. J Gastroenterol Hepatol. 2006;21:1093–8.

    Article  PubMed  CAS  Google Scholar 

  55. Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB, et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PloS One. 2013;8:e53701.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Jamal M, Rath BH, Tsang PS, Camphausen K, Tofilon PJ. The brain microenvironment preferentially enhances the radioresistance of CD133(+) glioblastoma stem-like cells. Neoplasia. 2012;14:150–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 2011;71:614–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Park JM, Munoz JL, Won BW, Bliss SA, Greco SJ, Patel SA, et al. Exogenous CXCL12 activates protein kinase C to phosphorylate connexin 43 for gap junctional intercellular communication among confluent breast cancer cells. Cancer Lett. 2013;331:84–91.

    Article  PubMed  CAS  Google Scholar 

  60. Perez A, Neskey DM, Wen J, Pereira L, Reategui EP, Goodwin WJ, et al. CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 2013;49:306–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Boiko AD. Isolation of melanoma tumor-initiating cells from surgical tissues. Methods Mol Biol. 2013;961:253–9.

    Article  PubMed  CAS  Google Scholar 

  62. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni RE, Florio T, et al. Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell cycle. 2013;12:491–500.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Tazzari PL, Tabellini G, Ricci F, Papa V, Bortul R, Chiarini F, et al. Synergistic proapoptotic activity of recombinant TRAIL plus the Akt inhibitor Perifosine in acute myelogenous leukemia cells. Cancer Res. 2008;68:9394–403.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Miftakhova R, Sandberg T, Hedblom A, Nevzorova T, Persson JL, Bredberg A. DNA methylation in ATRA-treated leukemia cell lines lacking a PML-RAR chromosome translocation. Anticancer Res. 2012;32:4715–22.

    PubMed  CAS  Google Scholar 

  65. Han YK, Lee JH, Park GY, Chun SH, Han JY, Kim SD, et al. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy. Biochem Biophys Res Commun. 2013;430:1329–33.

    Article  PubMed  CAS  Google Scholar 

  66. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  PubMed  CAS  Google Scholar 

  67. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  PubMed  CAS  Google Scholar 

  69. Scherr M, Eder M. Gene silencing by small regulatory RNAs in mammalian cells. Cell cycle. 2007;6:444–9.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson C, Sundaresan V. Regulatory small RNAs in plants. EXS. 2007;97:99–113.

    PubMed  CAS  Google Scholar 

  71. Dimmeler S, Nicotera P. MicroRNAs in age-related diseases. EMBO Mol Med. 2013;5:180–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.

    Article  PubMed  CAS  Google Scholar 

  73. Leonardo TR, Schultheisz HL, Loring JF, Laurent LC. The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol. 2012;14:1114–21.

    Article  PubMed  CAS  Google Scholar 

  74. Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84:381–8.

    Article  PubMed  CAS  Google Scholar 

  75. Harris AL. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys. 2001;34:325–472.

    Article  PubMed  CAS  Google Scholar 

  76. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83:1359–400.

    PubMed  CAS  Google Scholar 

  77. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem. 2002;383:725–37.

    Article  PubMed  CAS  Google Scholar 

  78. Musil LS, Goodenough DA. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993;74:1065–77.

    Article  PubMed  CAS  Google Scholar 

  79. Koval M, Harley JE, Hick E, Steinberg TH. Connexin46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J Cell Biol. 1997;137:847–57.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Zhang JT, Chen M, Foote CI, Nicholson BJ. Membrane integration of in vitro-translated gap junctional proteins: co- and post-translational mechanisms. Mol Biol Cell. 1996;7:471–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Ahmad S, Evans WH. Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions. Biochem J. 2002;365:693–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. George CH, Kendall JM, Evans WH. Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem. 1999;274:8678–85.

    Article  PubMed  CAS  Google Scholar 

  83. Wei CJ, Xu X, Lo CW. Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol. 2004;20:811–38.

    Article  PubMed  CAS  Google Scholar 

  84. Evans WH, Martin PEM. Lighting up gap junction channels in a flash. Bioessays. 2002;24:876–80.

    Article  PubMed  CAS  Google Scholar 

  85. van der Pluijm G. Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone. 2011;48:37–43.

    Article  PubMed  CAS  Google Scholar 

  86. Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer. 1992;51:522–9.

    Article  PubMed  CAS  Google Scholar 

  87. Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, et al. Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res. 1999;59:4104–10.

    PubMed  CAS  Google Scholar 

  88. Hirschi KK, Xu CE, Tsukamoto T, Sager R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ. 1996;7:861–70.

    PubMed  CAS  Google Scholar 

  89. Jamieson S, Going JJ, D’Arcy R, George WD. Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol. 1998;184:37–43.

    Article  PubMed  CAS  Google Scholar 

  90. Monaghan P, Moss D. Connexin expression and gap junctions in the mammary gland. Cell Biol Int. 1996;20:121–5.

    Article  PubMed  CAS  Google Scholar 

  91. Monaghan P, Perusinghe N, Carlile G, Evans WH. Rapid modulation of gap junction expression in mouse mammary gland during pregnancy, lactation, and involution. J Histochem Cytochem. 1994;42:931–8.

    Article  PubMed  CAS  Google Scholar 

  92. Talhouk RS, Elble RC, Bassam R, Daher M, Sfeir A, Mosleh LA, et al. Developmental expression patterns and regulation of connexins in the mouse mammary gland: expression of connexin30 in lactogenesis. Cell Tissue Res. 2005;319:49–59.

    Article  PubMed  CAS  Google Scholar 

  93. Kanczuga-Koda L, Sulkowski S, Lenczewski A, Koda M, Wincewicz A, Baltaziak M, et al. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J Clin Pathol. 2006;59:429–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21:163–7.

    Article  PubMed  CAS  Google Scholar 

  95. Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.

    Article  PubMed  CAS  Google Scholar 

  96. Monaghan P, Clarke C, Perusinghe NP, Moss DW, Chen XY, Evans WH. Gap junction distribution and connexin expression in human breast. Exp Cell Res. 1996;223:29–38.

    Article  PubMed  CAS  Google Scholar 

  97. Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR, et al. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res. 2001;61:1765–7.

    PubMed  CAS  Google Scholar 

  98. Locke D, Perusinghe N, Newman T, Jayatilake H, Evans WH, Monaghan P. Developmental expression and assembly of connexins into homomeric and heteromeric gap junction hemichannels in the mouse mammary gland. J Cell Physiol. 2000;183:228–37.

    Article  PubMed  CAS  Google Scholar 

  99. Lau AF, Kanemitsu MY, Kurata WE, Danesh S, Boynton AL. Epidermal growth factor disrupts gap-junctional communication and induces phosphorylation of connexin43 on serine. Mol Biol Cell. 1992;3:865–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Kanemitsu MY, Lau AF. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase. Mol Biol Cell. 1993;4:837–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Warn-Cramer BJ, Cottrell GT, Burt JM, Lau AF. Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase. J Biol Chem. 1998;273:9188–96.

    Article  PubMed  CAS  Google Scholar 

  102. Polontchouk L, Ebelt B, Jackels M, Dhein S. Chronic effects of endothelin 1 and angiotensin II on gap junctions and intercellular communication in cardiac cells. FASEB J. 2002;16:87–9.

    PubMed  CAS  Google Scholar 

  103. Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res. 2002;91:640–7.

    Article  PubMed  CAS  Google Scholar 

  104. Cameron SJ, Malik S, Akaike M, Lerner-Marmarosh N, Yan C, Lee JD, et al. Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase1/ERK5 but not ERK1/2 kinase activation. J Biol Chem. 2003;278:18682–8.

    Article  PubMed  CAS  Google Scholar 

  105. Cooper CD, Lampe PD. Casein kinase 1 regulates connexin-43 gap junction assembly. J Biol Chem. 2002;277:44962–8.

    Article  PubMed  CAS  Google Scholar 

  106. Kanemitsu MY, Jiang W, Eckhart W. Cdc2-mediated phosphorylation of the gap junction protein, connexin43, during mitosis. Cell Growth Differ. 1998;9:13–21.

    PubMed  CAS  Google Scholar 

  107. Lampe PD, Kurata WE, Warn-Cramer BJ, Lau AF. Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34cdc2 kinase. J Cell Sci. 1998;111:833–41.

    PubMed  CAS  Google Scholar 

  108. Xie H, Laird DW, Chang TH, Hu VW. A mitosis-specific phosphorylation of the gap junction protein connexin43 in human vascular cells: biochemical characterization and localization. J Cell Biol. 1997;137:203–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Berthoud VM, Ledbetter ML, Hertzberg EL, Saez JC. Connexin43 in MDCK cells: regulation by a tumor-promoting phorbol ester and Ca2+ . Eur J Cell Biol. 1992;57:40–50.

    PubMed  CAS  Google Scholar 

  110. Berthoud VM, Rook MB, Traub O, Hertzberg EL, Saez JC. On the mechanisms of cell uncoupling induced by a tumor promoter phorbol ester in clone 9 cells, a rat liver epithelial cell line. Eur J Cell Biol. 1993;62:384–96.

    PubMed  CAS  Google Scholar 

  111. Brissette JL, Kumar NM, Gilula NB, Dotto GP. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction proteins. Mol Cell Biol. 1991;11:5364–71.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Lampe PD. Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J Cell Biol. 1994;127:1895–905.

    Article  PubMed  CAS  Google Scholar 

  113. Reynhout JK, Lampe PD, Johnson RG. An activator of protein kinase C inhibits gap junction communication between cultured bovine lens cells. Exp Cell Res. 1992;198:337–42.

    Article  PubMed  CAS  Google Scholar 

  114. Paulson AF, Lampe PD, Meyer RA, TenBroek E, Atkinson MM, Walseth TF, et al. Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking. J Cell Sci. 2000;113:3037–49.

    PubMed  CAS  Google Scholar 

  115. Atkinson MM, Lampe PD, Lin HH, Kollander R, Li XR, Kiang DT. Cyclic AMP modifies the cellular distribution of connexin43 and induces a persistent increase in the junctional permeability of mouse mammary tumor cells. J Cell Sci. 1995;108:3079–90.

    PubMed  CAS  Google Scholar 

  116. Burghardt RC, Barhoumi R, Sewall TC, Bowen JA. Cyclic AMP induces rapid increases in gap junction permeability and changes in the cellular distribution of connexin43. J Membr Biol. 1995;148:243–53.

    Article  PubMed  CAS  Google Scholar 

  117. Yogo K, Ogawa T, Akiyama M, Ishida-Kitagawa N, Sasada H, Sato E, et al. PKA implicated in the phosphorylation of Cx43 induced by stimulation with FSH in rat granulosa cells. J Reprod Dev. 2006;52:321–8.

    Article  PubMed  CAS  Google Scholar 

  118. Loo LW, Berestecky JM, Kanemitsu MY, Lau AF. pp60src-mediated phosphorylation of connexin 43, a gap junction protein. J Biol Chem. 1995;270:12751–61.

    Article  PubMed  CAS  Google Scholar 

  119. Crow DS, Kurata WE, Lau AF. Phosphorylation of connexin43 in cells containing mutant src oncogenes. Oncogene. 1992;7:999–1003.

    PubMed  CAS  Google Scholar 

  120. Swenson KI, Piwnica-Worms H, McNamee H, Paul DL. Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v-src-induced inhibition of communication. Cell Reg. 1990;1:989–1002.

    CAS  Google Scholar 

  121. Crow DS, Beyer EC, Paul DL, Kobe SS, Lau AF. Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts. Mol Cell Biol. 1990;10:1754–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell commun signal. 2009;7:4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Elzarrad MK, Haroon A, Willecke K, Dobrowolski R, Gillespie MN, Al-Mehdi AB. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med. 2008;6:20.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  124. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Klotz LO. Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys. 2012;524:23–9.

    Article  PubMed  CAS  Google Scholar 

  126. Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, et al. MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer. 2010;9:229.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Dai X, Mao Z, Huang J, Xie S, Zhang H. The CXCL12/CXCR4 autocrine loop increases the metastatic potential of non-small cell lung cancer in vitro. Oncol Lett. 2013;5:277–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Steinl C, Essl M, Schreiber TD, Geiger K, Prokop L, Stevanovic S, et al. Release of matrix metalloproteinase-8 during physiological trafficking and induced mobilization of human hematopoietic stem cells. Stem Cells Dev. 2013;22:1307-18.

    Article  PubMed  CAS  Google Scholar 

  129. Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG. Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res. 2005;7:R402–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Ratajczak MZ, Kim C, Janowska-Wieczorek A, Ratajczak J. The expanding family of bone marrow homing factors for hematopoietic stem cells: stromal derived factor 1 is not the only player in the game. ScientificWorldJournal. 2012;2012:758512.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  131. Chou SH, Ko BS, Chiou JS, Hsu YC, Tsai MH, Chiu YC, et al. A knock-in npm1 mutation in mice results in myeloproliferation and implies a perturbation in hematopoietic microenvironment. PloS one. 2012;7:e49769.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  132. Hattermann K, Mentlein R. An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann Anat. 2013;195:103–10.

    Article  PubMed  CAS  Google Scholar 

  133. Lipfert J, Odemis V, Wagner DC, Boltze J, Engele J. CXCR4 and CXCR7 form a functional receptor unit for SDF-1/CXCL12 in primary rodent microglia. Neuropathol Appl Neurobiol. 2013;39:667–80.

    Article  PubMed  CAS  Google Scholar 

  134. Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V, et al. Mesenchymal stem cells in early entry of breast cancer into bone marrow. PloS One. 2008;3:e2563.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Greco SJ, Patel SA, Bryan M, Pliner LF, Banerjee D, Rameshwar P. AMD3100-mediated production of interleukin-1 from mesenchymal stem cells is key to chemosensitivity of breast cancer cells. Am J Cancer Res. 2011;1:701–15.

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  137. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 2008;68:4331–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  138. Uchida D, Onoue T, Tomizuka Y, Begum NM, Miwa Y, Yoshida H, et al. Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the distant metastasis of human oral squamous cell carcinoma. Mol Cancer Res. 2007;5:685–94.

    Article  PubMed  CAS  Google Scholar 

  139. Berghuis D, Schilham MW, Santos SJ, Savola S, Knowles HJ, Dirksen U, et al. The CXCR4-CXCL12 axis in Ewing sarcoma: promotion of tumor growth rather than metastatic disease. Clinical Sarcoma Res. 2012;2:24.

    Article  CAS  Google Scholar 

  140. Tang T, Xia QJ, Chen JB, Xi MR, Lei D. Expression of the CXCL12/SDF-1 Chemokine Receptor CXCR7 in Human Brain Tumours. Asian Pac J Cancer Prev. 2012;13:5281–6.

    Article  PubMed  Google Scholar 

  141. Nair VS, Maeda LS, Ioannidis JP. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst. 2012;104:528–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  142. Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J. 2012;18:215–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  143. Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res. 2011;71:5950–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.

    Article  PubMed  CAS  Google Scholar 

  145. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.

    Article  PubMed  CAS  Google Scholar 

  146. Yu F, Jiao Y, Zhu Y, Wang Y, Zhu J, Cui X, et al. MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial-mesenchymal transition in breast tumor-initiating cells. J Biol Chem. 2012;287:465–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  147. Han M, Liu M, Wang Y, Mo Z, Bi X, Liu Z, et al. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem. 2012;363:427–36.

    Article  PubMed  CAS  Google Scholar 

  148. Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 2010;29:4194–204.

    Article  PubMed  CAS  Google Scholar 

  149. Guttilla IK, Adams BD, White BA. ERalpha, microRNAs, and the epithelial-mesenchymal transition in breast cancer. Trends Endocrinol Metab. 2012;23:73–82.

    Article  PubMed  CAS  Google Scholar 

  150. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17:7105–15.

    Article  PubMed  CAS  Google Scholar 

  151. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7:2152–9.

    Article  PubMed  CAS  Google Scholar 

  152. Liu H. MicroRNAs in breast cancer initiation and progression. Cell Mol Life Sci. 2012;69:3587–99.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  153. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012;4:3–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  154. van Rooij E, Marshall WS, Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008;103:919–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  155. Lindow M, Kauppinen S. Discovering the first microRNA-targeted drug. J Cell Biol. 2012;199:407–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  156. Laurent LC, Chen J, Ulitsky I, Mueller FJ, Lu C, Shamir R, et al. Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells. 2008;26:1506–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bibber, B., Sinha, G., Patel, S., Rameshwar, P., Mohan, R. (2014). MicroRNAs in Stem Cells and Cancer Stem Cells. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_5

Download citation

Publish with us

Policies and ethics