Skip to main content

miRNA Biogenesis and Function

  • Chapter
  • First Online:
  • 1164 Accesses

Abstract

miRNAs are small noncoding RNAs that bind the 3′ untranslated regions (UTRs) of mRNA targets and, acting with associated proteins, facilitate translation repression and degradation of target mRNAs. Since their discovery in Caenorhabditis elegans, miRNAs and their accessory proteins have been shown to be conserved throughout phylogeny. miRNAs exert their regulatory functions in myriad biological settings, from development and growth to disease. In exploring the mechanism of miRNA biogenesis and function, both canonical and noncanonical, it is possible to gain a broader understanding of how miRNAs work in different biological states, including cancer. Here, we provide an overview of miRNA discovery, biogenesis, and function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    PubMed  CAS  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.

    PubMed  CAS  Google Scholar 

  3. Ruvkun G, Giusto J. The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature. 1989;338(6213):313–9. doi:10.1038/338313a0.

    PubMed  CAS  Google Scholar 

  4. Ambros V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell. 1989;57(1):49–57.

    PubMed  CAS  Google Scholar 

  5. Ambros V, Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1987;1(4):398–414.

    PubMed  CAS  Google Scholar 

  6. Arasu P, Wightman B, Ruvkun G. Temporal regulation of lin-14 by the antagonistic action of two other heterochronic genes, lin-4 and lin-28. Genes Dev. 1991;5(10):1825–33.

    PubMed  CAS  Google Scholar 

  7. Wightman B, Burglin TR, Gatto J, Arasu P, Ruvkun G. Negative regulatory sequences in the lin-14 3’-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. Genes Dev. 1991;5(10):1813–24.

    PubMed  CAS  Google Scholar 

  8. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.

    PubMed  CAS  Google Scholar 

  9. Pasquinelli AE, Reinhart BJ, Slack FJ, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–89. doi:10.1038/35040556.

    PubMed  CAS  Google Scholar 

  10. Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000;5(4):659–69.

    PubMed  CAS  Google Scholar 

  11. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    PubMed  CAS  Google Scholar 

  12. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.

    PubMed  CAS  Google Scholar 

  13. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294(5543):862–4. doi:10.1126/science.1065329.

    PubMed  CAS  Google Scholar 

  14. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.

    PubMed  CAS  Google Scholar 

  15. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA. 2003;9(2):175–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113(6):673–6.

    PubMed  CAS  Google Scholar 

  17. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T. The small RNA profile during drosophila melanogaster development. Dev Cell. 2003;5(2):337.

    PubMed  CAS  Google Scholar 

  18. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell. 2003;5(2):351–8.

    PubMed  CAS  Google Scholar 

  19. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel D. Vertebrate microRNA genes. Science. 2003;299(5612):1540. doi:10.1126/science.1080372.

    PubMed  CAS  Google Scholar 

  20. Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003;17(8):991–1008.

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26.

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    PubMed  CAS  Google Scholar 

  23. Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286(5441):950–2.

    PubMed  CAS  Google Scholar 

  24. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in drosophila cells. Nature. 2000;404(6775):293–6. doi:10.1038/35005107.

    PubMed  CAS  Google Scholar 

  25. Parrish S, Fleenor J, Xu S, Mello C, Fire A. Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. 2000;6(5):1077–87.

    PubMed  CAS  Google Scholar 

  26. Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequence-specific mRNA degradation during RNAi in Drosophila embryos. Curr Biol. 2000;10 (19):1191–200.

    PubMed  CAS  Google Scholar 

  27. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21–23 nucleotide intervals. Cell. 2000;101(1):25–33.

    PubMed  CAS  Google Scholar 

  28. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409(6818):363–6.

    PubMed  CAS  Google Scholar 

  29. Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106 (1):23–34.

    PubMed  CAS  Google Scholar 

  30. Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8. doi:10.1126/science.1062961.

    PubMed  Google Scholar 

  31. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RHA. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15(20):2654–9. doi:10.1101/gad.927801.

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 2002;21(21):5864–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. Single processing center models for human Dicer and bacterial RNase III. Cell. 2004;118(1):57.

    PubMed  CAS  Google Scholar 

  34. MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA. Structural basis for double-stranded RNA processing by Dicer. Science. 2006;311(5758):195–8.

    PubMed  CAS  Google Scholar 

  35. Park JE, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature. 2011;475(7355):201–5. doi:10.1038/nature10198.

    PubMed  CAS  Google Scholar 

  36. Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis Paul N, Kay Mark A. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing invivo. Cell. 2012;151(4):900–11. doi:10.1016/j.cell.2012.09.042.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Chendrimada T, Gregory R, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436(7051):740–4. doi:10.1038/nature03868.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Haase AD, Jaskiewicz L, Zhang H, Lainé S, Sack R, Gatignol A, Filipowicz W. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with dicer and functions in RNA silencing. EMBO Rep. 2005;6(10):961–7. doi:10.1038/sj.embor.7400509.

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 2005;3(7):e236. doi:10.1371/journal.pbio.0030236.

    PubMed Central  PubMed  Google Scholar 

  40. Saito K, Ishizuka A, Siomi H, Siomi MC. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 2005;3(7):e235.

    PubMed Central  PubMed  Google Scholar 

  41. Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 2005;19(14):1674–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Olena AF, Patton JG. Genomic organization of microRNAs. J Cell Physiol. 2009;222(3):540–5. doi:10.1002/jcp.21993.

    Google Scholar 

  43. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16(6):720–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Lee Y, Jeon K, Lee J-T, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9. doi:10.1038/nature01957.

    PubMed  CAS  Google Scholar 

  46. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016–27.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432(7014):231–5. doi:10.1038/nature03049.

    PubMed  CAS  Google Scholar 

  48. Gregory RI, Yan K-P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40. doi:10.1038/nature03120.

    PubMed  CAS  Google Scholar 

  49. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004;14(23):2162–7.

    PubMed  CAS  Google Scholar 

  50. Kim Y-K, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775–83. doi:10.1038/sj.emboj.7601512.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzoni I, Proudfoot NJ. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol. 2008;15(9):902–9.

    PubMed  CAS  Google Scholar 

  52. Pawlicki JM, Steitz JA. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J Cell Biol. 2008;182(1):61–76. doi:10.1083/jcb.200803111.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 2005;24(1):138–48. doi:10.1038/sj.emboj.7600491.

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Zeng Y, Cullen BR. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J Biol Chem. 2005;280(30):27595–60.

    PubMed  CAS  Google Scholar 

  55. Han J, Lee Y, Yeom K-H, Nam J-W, Heo I, Rhee J-K, Sohn SY, Cho Y, Zhang B-T, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901. doi:10.1016/j.cell.2006.03.043.

    PubMed  CAS  Google Scholar 

  56. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10(2):185–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95–8. doi:10.1126/science.1090599.

    PubMed  CAS  Google Scholar 

  59. Lee Y, Kim M, Han J, Yeom K-H, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60. doi:10.1038/sj.emboj.7600385.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna. 2004;10(12):1957–66.

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Yang J-S, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell. 2011;43(6):892–903. doi:10.1016/j.molcel.2011.07.024.

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Thatcher EJ, Bond J, Paydar I, Patton JG. Genomic organization of zebrafish microRNAs. BMC Genomics. 2008;9:253. doi:10.1186/1471–2164-9–253.

    PubMed Central  PubMed  Google Scholar 

  63. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8 (Database issue).

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell. 2007;130(1):89–100. doi:10.1016/j.cell.2007.06.028.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing. Nature. 2007;448(7149):83–6. doi:10.1038/nature05983.

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. Mammalian mirtron genes. Mol Cell. 2007;28(2):328–36. doi:10.1016/j.molcel.2007.09.028.

    PubMed Central  PubMed  CAS  Google Scholar 

  67. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R. Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 2008;22(20):2773–85. doi:10.1101/gad.1705308.

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR. Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev. 2010;24(17):1951–60. doi:10.1101/gad.1953310.

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 2008;18(6):957–64.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Flynt AS, Greimann J, Chung W, Lima C, Lai EC. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila. Mol Cell. 2010;38(6):900–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Chung WJ, Okamura K, Martin R, Lai EC. Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol. 2008;18(11):795–802. doi:10.1016/j.cub.2008.05.006.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Cheloufi S, Dos Santos C, Chong M, Hannon G. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010;465(7298):584–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Cifuentes D, Xue H, Taylor DW, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson ND, Wolfe SA, Giraldez AJ. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science. 2010;328(5986):1694–8. doi:10.1126/science.1190809.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Yang JS, Maurin T, Robine N, Rasmussen KD, Jeffrey KL, Chandwani R, Papapetrou EP, Sadelain M, O’Carroll D, Lai EC. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A. 2010;107(34):15163–8. doi:10.1073/pnas.1006432107.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One. 2009;4(4):e5279.

    PubMed Central  PubMed  Google Scholar 

  76. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22(22):3172–83. doi:10.1101/gad.1706508.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Wang Y, Li X, Hu H. Transcriptional regulation of co-expressed microRNA target genes. Genomics. 2011;98(6):445–52. doi:10.1016/j.ygeno.2011.09.004.

    PubMed  CAS  Google Scholar 

  78. Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR, Zhu J. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell. 2010;38(1):67–77. doi:10.1016/j.molcel.2010.02.021.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320(5872):97–100. doi:10.1126/science.1154040.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, O’Sullivan M, Lu J, Phillips LA, Lockhart VL, Shah SP, Tanwar PS, Mermel CH, Beroukhim R, Azam M, Teixeira J, Meyerson M, Hughes TP, Llovet JM, Radich J, Mullighan CG, Golub TR, Sorensen PH, Daley GQ. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41(7):843–8. doi:10.1038/ng.392.

    PubMed Central  PubMed  CAS  Google Scholar 

  81. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008;32(2):276–84. doi:10.1016/j.molcel.2008.09.014.

    PubMed  CAS  Google Scholar 

  82. Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol. 2009;16(10):1021–5. doi:10.1038/nsmb.1676.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol. 2009;11(9):1157–63. doi:10.1038/ncb1931.

    PubMed Central  PubMed  CAS  Google Scholar 

  84. Heo I, Joo C, Kim Y-K, Ha M, Yoon M-J, Cho J, Yeom K-H, Han J, Kim VN. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009;138(4):696–708. doi:10.1016/j.cell.2009.08.002.

    PubMed  CAS  Google Scholar 

  85. Newman M, Thomson J, Hammond S. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA. 2008;14(8):1539–49. doi:10.1261/rna.1155108.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Viswanathan SR, Daley GQ. Lin28: a microRNA regulator with a macro role. Cell. 2010;140(4):445–9. doi:10.1016/j.cell.2010.02.007.

    PubMed  CAS  Google Scholar 

  87. Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 2008;105(39):14879–84. doi:10.1073/pnas.0803230105.

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K. RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep. 2007;8(8):763–9. doi:10.1038/sj.embor.7401011.

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, Nishikura K. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36(16):5270–80. doi:10.1093/nar/gkn479.

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Davis BN, Hata A. Regulation of MicroRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal. 2009;7:18. doi:10.1186/1478–811X-7–18.

    PubMed Central  PubMed  Google Scholar 

  91. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610.

    PubMed  CAS  Google Scholar 

  92. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999;13(24):3191–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188–200.

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    PubMed  CAS  Google Scholar 

  95. Hammond S, Boettcher, S., Caudy, A., Kobayashi, R., Hannon, G. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science. 2001;293:1146–50.

    PubMed  CAS  Google Scholar 

  96. Cerutti L, Mian N, Bateman A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci. 2000;25(10):481–2.

    PubMed  CAS  Google Scholar 

  97. Yan KS, Yan, S., Farooq A, Han A, Zeng L, Zhou M. Stucture and conserved RNA binding of the PAZ domain. Nature. 2003;426:469–74.

    CAS  Google Scholar 

  98. Lingel A, Simon B, Izaurralde E, Sattler M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature. 2003;426(6965):465–9. doi:10.1038/nature02123.

    PubMed  CAS  Google Scholar 

  99. Song J, Liu J, Tolia N, Schneiderman J, Smith SK, Martienssen RA, Hannon G, Joshua-Tor L. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol. 2003;10(12):1026–32. doi:10.1038/nsb1016.

    PubMed  CAS  Google Scholar 

  100. Lingel A, Simon B, Izaurralde E, Sattler M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol. 2004;11(6):576–7. doi:10.1038/nsmb777.

    CAS  Google Scholar 

  101. Ma JB, Ye K, Patel DJ. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature. 2004;429(6989):318–22. doi:10.1038/nature02519.

    PubMed  CAS  Google Scholar 

  102. Song J, Smith SK, Hannon G, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004;305(5689):1434–7. doi:10.1126/science.1102514.

    PubMed  CAS  Google Scholar 

  103. Liu J. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41. doi:10.1126/science.1102513.

    PubMed  CAS  Google Scholar 

  104. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60. doi:10.1126/science.1073827.

    PubMed  Google Scholar 

  105. Doench JG, Petersen CP, Sharp PA. siRNAs can function as miRNAs. Genes Dev. 2003;17(4):438–42.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Saxena S, Jonsson ZO, Dutta A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem. 2003;278(45):44312–9. doi:10.1074/jbc.M307089200.

    PubMed  CAS  Google Scholar 

  107. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci U S A. 2003;100(17):9779–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  108. Pillai RS, Artus CG, Filipowicz W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. Rna. 2004;10(10):1518–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.

    PubMed  CAS  Google Scholar 

  110. Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 2005;19(24):2979–90. doi:10.1101/gad.1384005.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci U S A. 2008;105(2):512–7. doi:10.1073/pnas.0710869105.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol. 2005;7(6):633.

    PubMed  CAS  Google Scholar 

  113. Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC, Fritzler MJ, Chan EK. Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol. 2005;7(12):1267–74.

    PubMed  Google Scholar 

  114. Rehwinkel JAN, Behm-Ansmant I, Gatfield D, Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA. 2005;11(11):1640–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat Cell Biol. 2005;7(12):1261–6.

    PubMed Central  PubMed  Google Scholar 

  116. Ding L, Spencer A, Morita K, Han M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell. 2005;19(4):437–47. doi:10.1016/j.molcel.2005.07.013.

    PubMed  CAS  Google Scholar 

  117. Eulalio A, Huntzinger E, Izaurralde E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol. 2008;15(4):346–53. doi:10.1038/nsmb.1405.

    PubMed  CAS  Google Scholar 

  118. Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T. Identification of novel argonaute-associated proteins. Curr Biol. 2005;15(23):2149–55. doi:10.1016/j.cub.2005.10.048.

    PubMed  CAS  Google Scholar 

  119. Martinez J, Patkaniowska A, Urlaub H, Lührmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell. 2002;110(5):563–74.

    PubMed  CAS  Google Scholar 

  120. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003;115(2):199–208.

    PubMed  CAS  Google Scholar 

  121. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.

    PubMed  CAS  Google Scholar 

  122. Vella MC, Choi E-Y, Lin S-Y, Reinert K, Slack FJ. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 2004;18(2):132–7. doi:10.1101/gad.1165404.

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5(1):R1.

    PubMed Central  PubMed  Google Scholar 

  124. Lewis BP, Shih I-h, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    PubMed  CAS  Google Scholar 

  125. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.

    PubMed  CAS  Google Scholar 

  126. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18(5):504–11.

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004;18(10):1165–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3(3):e85. doi:10.1371/journal.pbio.0030085.

    PubMed Central  PubMed  Google Scholar 

  129. Grimson A, Farh KK-H, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105. doi:10.1016/j.molcel.2007.06.017.

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Saetrom P, Heale BS, Snove O Jr., Aagaard L, Alluin J, Rossi JJ. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 2007;35(7):2333–42. doi:10.1093/nar/gkm133.

    PubMed Central  PubMed  CAS  Google Scholar 

  131. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics. 2007;8:69.

    PubMed Central  PubMed  Google Scholar 

  132. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. Rna. 2007;13(11):1894–910.

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Li N, Flynt A, Kim HR, Solnica-Krezel L, Patton J. Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res. 2008;36(13):4277–85. doi:10.1093/nar/gkn388.

    PubMed Central  PubMed  CAS  Google Scholar 

  134. Shin C, Nam J-W, Farh KK-H, Chiang HR, Shkumatava A, Bartel DP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell. 2010;38(6):789–802. doi:10.1016/j.molcel.2010.06.005.

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol. 2012;19(3):321–7. doi:10.1038/nsmb.2230.

    PubMed Central  PubMed  CAS  Google Scholar 

  136. Loeb Gabriel B, Khan Aly A, Canner D, Hiatt Joseph B, Shendure J, Darnell Robert B, Leslie Christina S, Rudensky Alexander Y. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell. 2012;48(5):760–70. doi:10.1016/j.molcel.2012.10.002.

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Yekta S, Shih I-h, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304(5670):594–6. doi:10.1126/science.1097434.

    PubMed  CAS  Google Scholar 

  138. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216(2):671–80. doi:10.1006/dbio.1999.9523.

    PubMed  CAS  Google Scholar 

  139. Seggerson K, Tang L, Moss EG. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev Biol. 2002;243(2):215–25.

    PubMed  CAS  Google Scholar 

  140. Petersen CP, Bordeleau M-E, Pelletier J, Sharp PA. Short RNAs repress translation after initiation in mammalian cells. Mol Cell. 2006;21(4):533–42. doi:10.1016/j.molcel.2006.01.031.

    PubMed  CAS  Google Scholar 

  141. Maroney PA, Yu Y, Fisher J, Nilsen TW. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol. 2006;13(12):1102–7.

    PubMed  CAS  Google Scholar 

  142. Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol. 2006;13(12):1108–14.

    PubMed  CAS  Google Scholar 

  143. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309(5740):1573–6.

    PubMed  CAS  Google Scholar 

  144. Humphreys DT, Westman BJ, Martin DIK, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005;102(47):16961–6. doi:10.1073/pnas.0506482102.

    PubMed Central  PubMed  CAS  Google Scholar 

  145. Wang B, Love TM, Call ME, Doench JG, Novina CD. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell. 2006;22(4):553–60.

    PubMed  CAS  Google Scholar 

  146. Thermann R, Hentze MW. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature. 2007;447(7146):875–8. doi:10.1038/nature05878.

    PubMed  CAS  Google Scholar 

  147. Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science. 2007;317(5845):1764–7. doi:10.1126/science.1146067.

    PubMed  CAS  Google Scholar 

  148. Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007;21(15):1857–62. doi:10.1101/gad.1566707.

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Bazzini AA, Lee MT, Giraldez AJ. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science. 2012;336(6078):233–7. doi:10.1126/science.1215704.

    PubMed Central  PubMed  CAS  Google Scholar 

  150. Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 2007;129(6):1141–51.

    PubMed  CAS  Google Scholar 

  151. Kinch LN, Grishin NV. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Biol Direct. 2009;4:2. doi:10.1186/1745–6150-4–2.

    PubMed Central  PubMed  Google Scholar 

  152. Djuranovic S, Zinchenko MK, Hur JK, Nahvi A, Brunelle JL, Rogers EJ, Green R. Allosteric regulation of Argonaute proteins by miRNAs. Nat Struct Mol Biol. 2010;17(2):144–50. doi:10.1038/nsmb.1736.

    PubMed Central  PubMed  CAS  Google Scholar 

  153. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R. MicroRNA silencing through RISC recruitment of eIF6. Nature. 2007;447(7146):823–8. doi:10.1038/nature05841.

    PubMed  CAS  Google Scholar 

  154. Walters RW, Bradrick SS, Gromeier M. Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. RNA. 2010;16(1):239–50. doi:10.1261/rna.1795410.

    PubMed Central  PubMed  CAS  Google Scholar 

  155. Gu S, Kay MA. How do miRNAs mediate translational repression? Silence. 2010;1(1):11. doi:10.1186/1758–907X-1–11.

    PubMed Central  PubMed  Google Scholar 

  156. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005;433(7027):769–73.

    PubMed  CAS  Google Scholar 

  157. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell. 2005;122(4):553–63.

    PubMed  CAS  Google Scholar 

  158. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, van Dongen S, Inoue K, Enright AJ, Schier AF. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006;312(5770):75–9. doi:10.1126/science.1122689.

    PubMed  CAS  Google Scholar 

  159. Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20(14):1885–98. doi:10.1101/gad.1424106.

    PubMed Central  PubMed  CAS  Google Scholar 

  160. Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF, Sonenberg N. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol. 2011;18(11):1211–7. doi:10.1038/nsmb.2149.

    PubMed  CAS  Google Scholar 

  161. Braun JE, Huntzinger E, Fauser M, Izaurralde E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell. 2011;44(1):120–33. doi:10.1016/j.molcel.2011.09.007.

    PubMed  CAS  Google Scholar 

  162. Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol. 2011;18(11):1218–26. doi:10.1038/nsmb.2166.

    PubMed  CAS  Google Scholar 

  163. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A. 2006;103(11):4034–9. doi:10.1073/pnas.0510928103.

    PubMed Central  PubMed  CAS  Google Scholar 

  164. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA. 2009;15(1):21–32. doi:10.1261/rna.1399509.

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Baek D, Villén J, Shin C, Camargo F, Gygi S, Bartel D. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71. doi:10.1038/nature07242.

    PubMed Central  PubMed  CAS  Google Scholar 

  166. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466(7308):835–40. doi:10.1038/nature09267.

    PubMed Central  PubMed  CAS  Google Scholar 

  167. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79. doi:10.1146/annurev-biochem-060308–103103.

    PubMed  CAS  Google Scholar 

  168. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Reviews Genet. 2011;12(2):99–110. doi:10.1038/nrg2936.

    CAS  Google Scholar 

  169. Hock J, Weinmann L, Ender C, Rudel S, Kremmer E, Raabe M, Urlaub H, Meister G. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 2007;8(11):1052–60. doi:10.1038/sj.embor.7401088.

    PubMed Central  PubMed  Google Scholar 

  170. Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology. 2009;150(1):14–23. doi:10.1210/en.2008–0984.

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science. 2007;315(5815):1137–40. doi:10.1126/science.1138050.

    PubMed Central  PubMed  CAS  Google Scholar 

  172. Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol. 2009;25:355–76. doi:10.1146/annurev.cellbio.24.110707.175327.

    PubMed Central  PubMed  CAS  Google Scholar 

  173. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. doi:10.1038/nrg2521.

    PubMed  CAS  Google Scholar 

  174. Thatcher EJ, Paydar I, Anderson KK, Patton JG. Regulation of zebrafish fin regeneration by microRNAs. Proc Natl Acad Sci U S A. 2008;105(47):18384–9. doi:10.1073/pnas.0803713105.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. Patton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olena, A., Patton, J. (2014). miRNA Biogenesis and Function. In: Singh, S., Rameshwar, P. (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8065-6_1

Download citation

Publish with us

Policies and ethics