Skip to main content

The Kinetics and Product Characteristics of Oxygen Reduction and Evolution in LiO2 Batteries

  • Chapter
  • First Online:
Book cover The Lithium Air Battery

Abstract

Understanding the origin of substantial performance challenges limiting the practical development of Li–O2 batteries, such as low rate capability, limited cycle life (<100 cycles), and the large voltage polarization (0.6–1 V) on charge, requires improved understanding of chemical, electrochemical, morphological, and electronic processes occurring in the electrode. This chapter highlights current understanding of how the kinetics and reaction product characteristics in Li–O2 batteries during discharge and charge influence performance characteristics at the cell level. First, a brief overview of energy and power of various Li–O2 electrodes reported in the literature to date is presented for a range of O2 electrode materials and designs as a benchmark for what has been achieved at the laboratory scale. Next, we review chemical and morphological understanding of the oxygen reduction (discharge) process, with a particular focus on nanostructured carbon electrodes in 1,2-dimethoxyethane (DME) electrolyte. The kinetics of oxygen reduction and the influence of kinetics on the morphology and shape evolution of Li2O2 are discussed, including recent insights into the microscale structure and proposed growth mechanisms of “toroidal” crystalline Li2O2 at low currents or overpotentials. We next discuss the surface chemistry of discharged oxygen electrodes, including the morphology-dependent surface chemistry of Li2O2, reactivity between Li2O2 and the carbon electrode, reactivity between Li2O2 and ether-based electrolytes, and resulting parasitic products that form upon discharge and during subsequent cycling. In light of chemical instabilities present nearly universally in liquid cells, we highlight recent work utilizing in situ ambient pressure XPS (APXPS) to examine Li–O2 electrochemistry during battery operation in an all-solid-state cell. Finally, we discuss the influence of morphology and surface chemistry of the discharge product on the charging kinetics in carbon-nanostructured electrodes, where morphology-dependent Li2O2 surface chemistry and structure are found to significantly influence the overpotential required during oxidation. Combined chemical, electrochemical, morphological, and electronic understanding is increasingly important as researchers seek to develop improved O2 electrodes with increased round-trip efficiency and improved chemical/electrochemical reversibility approaching what is needed for practical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  2. Lu Y-C, Gallant BM, Kwabi DG et al (2013) Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci 6:750–768

    Article  Google Scholar 

  3. Freunberger SA, Chen Y, Drewett NE et al (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50:8609–8613

    Article  Google Scholar 

  4. Gallant BM, Mitchell RR, Kwabi DG et al (2012) Chemical and morphological changes of Li-O2 battery electrodes upon cycling. J Phys Chem C 116:20800–20805

    Article  Google Scholar 

  5. McCloskey BD, Bethune DS, Shelby RM et al (2011) Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J Phys Chem Lett 2:1161–1166

    Article  Google Scholar 

  6. McCloskey BD, Speidel A, Scheffler R et al (2012) Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J Phys Chem Lett 3:997–1001

    Article  Google Scholar 

  7. Thotiyl MMO, Freunberger SA, Peng Z et al (2013) The carbon electrode in nonaqueous Li-O2 cells. J Am Chem Soc 135:494–500

    Article  Google Scholar 

  8. Xu W, Hu JZ, Engelhard MH et al (2012) The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. J Power Sources 215:240–247

    Article  Google Scholar 

  9. Lu Y-C, Shao-Horn Y (2012) Probing the reaction kinetics of the charge reactions of nonaqueous Li-O2 batteries. J Phys Chem Lett 4:93–99

    Article  Google Scholar 

  10. Peng Z, Freunberger SA, Chen Y et al (2012) A reversible and higher-rate Li-O2 battery. Science 337:563–566

    Article  Google Scholar 

  11. Lu Y-C, Kwabi DG, Yao KPC et al (2011) The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ Sci 4:2999–3007

    Article  Google Scholar 

  12. Mitchell RR, Gallant BM, Thompson CV et al (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ Sci 4:2952–2958

    Article  Google Scholar 

  13. Freunberger SA, Chen YH, Peng ZQ et al (2011) Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133:8040–8047

    Article  Google Scholar 

  14. Black R, Lee JH, Adams B et al (2013) The role of catalysts and peroxide oxidation in lithium-oxygen batteries. Angew Chem Int Ed 52:392–396

    Article  Google Scholar 

  15. Black R, Oh SH, Lee JH et al (2012) Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134:2902–2905

    Article  Google Scholar 

  16. Mitchell RR, Gallant BM, Shao-Horn Y et al (2013) Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J Phys Chem Lett 4:1060–1064

    Article  Google Scholar 

  17. Oh SH, Nazar LF (2012) Oxide catalysts for rechargeable high-capacity Li-O2 batteries. Adv Energy Mater 2:903–910

    Article  Google Scholar 

  18. Wang Z-L, Xu D, Xu J-J et al (2012) Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv Funct Mater 22:3699–3705

    Article  Google Scholar 

  19. Chen H, Armand M, Demailly G et al (2008) From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 4:198–198

    Google Scholar 

  20. Kang KS, Meng YS, Breger J et al (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980

    Article  Google Scholar 

  21. Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1:2193–2203

    Article  Google Scholar 

  22. Lee JS, Kim ST, Cao R et al (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1:34–50

    Article  Google Scholar 

  23. Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133:19048–19051

    Article  Google Scholar 

  24. Jung H-G, Hassoun J, Park J-B et al (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–585

    Article  Google Scholar 

  25. McCloskey BD, Scheffler R, Speidel A et al (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133:18038–18041

    Article  Google Scholar 

  26. Gogotsi Y, Simon P (2011) True performance metrics in electrochemical energy storage. Science 334:917–918

    Article  Google Scholar 

  27. Fehrenbacher K (2011) 10 companies to watch out for of ARPA-E. http://gigaom.com/cleantech/10-companies-to-watch-for-outta-arpa-e. Accessed 10 Sept 2013

  28. Polyplus (2009) Advanced lithium battery technology. http://www.polyplus.com/liair.html. Accessed 10 Sept 2013

  29. Gallant BM, Kwabi DG, Mitchell RR et al (2013) Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ Sci 6:2518–2528

    Article  Google Scholar 

  30. Viswanathan V, Norskov JK, Speidel A et al (2013) Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J Phys Chem Lett 4:556–560

    Article  Google Scholar 

  31. Xu Y, Shelton WA (2011) Oxygen reduction by lithium on model carbon and oxidized carbon structures. J Electrochem Soc 158:A1177–A1184

    Article  Google Scholar 

  32. Lu Y-C, Gasteiger HA, Parent MC et al (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid-State Lett 13:A69–A72

    Article  Google Scholar 

  33. Fan WG, Cui ZH, Guo XX (2013) Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O2 cells. J Phys Chem C 117:2623–2627

    Article  Google Scholar 

  34. Lee J-H, Black R, Popov G et al (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium/oxygen batteries. Energy Environ Sci 5:9558–9565

    Article  Google Scholar 

  35. Xu D, Wang Z-l, Xu J-j et al (2012) Novel DMSO-based electrolyte for high performance rechargeable Li-O2 batteries. Chem Commun 48:6948–6950

    Article  Google Scholar 

  36. Cota LG, de la Mora P (2005) On the structure of lithium peroxide, Li2O2. Acta Crystallogr Sect B Struct Sci 61:133–136

    Article  Google Scholar 

  37. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829–R858

    Article  Google Scholar 

  38. Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501–016556

    Article  Google Scholar 

  39. Hanneman RE, Gatos HC, Finn MC (1962) Elastic strain energy associated with a surfaces of III-V compounds. J Phys Chem Solids 23:1553–1556

    Article  Google Scholar 

  40. Radin MD, Tian F, Siegel DJ (2012) Electronic structure of Li2O2 0001 surfaces. J Mater Sci 47:7564–7570

    Article  Google Scholar 

  41. Mo Y, Ong SP, Ceder G (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Phys Rev B 84:205446

    Article  Google Scholar 

  42. Thachepan S, Li M, Davis SA et al (2006) Additive-mediated crystallization of complex calcium carbonate superstructures in reverse microemulsions. Chem Mater 18:3557–3561

    Article  Google Scholar 

  43. Wang TP, Antonietti M, Colfen H (2006) Calcite mesocrystals: “morphing” crystals by a polyelectrolyte. Chem Eur J 12:5722–5730

    Article  Google Scholar 

  44. Geng X, Liu L, Jiang J et al (2010) Crystallization of CaCO3 mesocrystals and complex aggregates in a mixed solvent media using polystyrene sulfonate as a crystal growth modifier. Cryst Growth Des 10:3448–3453

    Article  Google Scholar 

  45. Liu Z, Wen XD, Wu XL et al (2009) Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres. J Am Chem Soc 131:9405–9412

    Article  Google Scholar 

  46. Cao AM, Hu JS, Liang HP et al (2006) Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors. J Phys Chem B 110:15858–15863

    Article  Google Scholar 

  47. Come J, Taberna PL, Hamelet S et al (2011) Electrochemical kinetic study of LiFePO4 using cavity microelectrode. J Electrochem Soc 158:A1090

    Article  Google Scholar 

  48. Peng Z, Freunberger SA, Hardwick LJ et al (2011) Oxygen reactions in a non-aqueous Li(+) electrolyte. Angew Chem Int Ed 50:6351–6355

    Article  Google Scholar 

  49. Laoire CO, Mukerjee S, Abraham KM et al (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114:9178–9186

    Article  Google Scholar 

  50. Vanelp J, Wieland JL, Eskes H et al (1991) Electronic-structure of CoO, Li-doped CoO, and LiCoO2. Phys Rev B 44:6090–6103

    Article  Google Scholar 

  51. Yang SL, Wang DN, Liang GX et al (2012) Soft X-ray XANES studies of various phases related to LiFePO4 based cathode materials. Energy Environ Sci 5:7007–7016

    Article  Google Scholar 

  52. Minasian SG, Keith JM, Batista ER et al (2013) Covalency in metal-oxygen multiple bonds evaluated using oxygen k-edge spectroscopy and electronic structure theory. J Am Chem Soc 135:1864–1871

    Article  Google Scholar 

  53. Degroot FMF, Faber J, Michiels JJM et al (1993) Oxygen 1s x-ray-absorption of tetravalent titanium-oxides—a comparison with single-particle calculations. Phys Rev B 48:2074–2080

    Article  Google Scholar 

  54. Li YL, Wang JJ, Li XF et al (2012) Discharge product morphology and increased charge performance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. J Mater Chem 22:20170–20174

    Article  Google Scholar 

  55. Qiao RM, Chuang YD, Yan SS et al (2012) Soft X-ray irradiation effects of Li2O2, Li2CO3 and Li2O revealed by absorption spectroscopy. PLoS One 7:e49182

    Article  Google Scholar 

  56. Ruckman MW, Chen J, Qiu SL et al (1991) Interpreting the near edges of O2 and O2 - in alkali-metal superoxides. Phys Rev Lett 67:2533–2536

    Article  Google Scholar 

  57. Hummelshoj J, Luntz AC, Norskov JK (2013) Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J Chem Phys 138:034703

    Article  Google Scholar 

  58. Radin MD, Rodriguez JF, Tian F et al (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134:1093–1103

    Article  Google Scholar 

  59. Ong SP, Mo Y, Ceder G (2012) Low hole polaron migration barrier in lithium peroxide. Phys Rev B 85:081105

    Article  Google Scholar 

  60. Yao KPC, Kwabi DG, Quinlan RA et al (2013) Thermal stability of Li2O2 and Li2O for Li-air batteries: in situ XRD and XPS studies. J Electrochem Soc 160:A824–A831

    Article  Google Scholar 

  61. Younesi R, Hahlin M, Treskow M et al (2012) Ether based electrolyte, LiBCN4 salt and binder degradation in the Li-O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES). J Phys Chem C 116:18597–18604

    Article  Google Scholar 

  62. Oh SH, Yim T, Pomerantseva E et al (2011) Decomposition reaction of lithium bis(oxalato)borate in the rechargeable lithium-oxygen cell. Electrochem Solid-State Lett 14:A185–A188

    Article  Google Scholar 

  63. Ong CW, Huang H, Zheng B et al (2004) X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy. J Appl Phys 95:3527–3534

    Article  Google Scholar 

  64. Younesi R, Hahlin M, Bjorefors F et al (2013) Li-O2 battery degradation by lithium peroxide (Li2O2): a model study. Chem Mater 25:77–84

    Article  Google Scholar 

  65. Veith GM, Nanda J, Delmau LH et al (2012) Influence of lithium salts on the discharge chemistry of Li-air cells. J Phys Chem Lett 3:1242–1247

    Article  Google Scholar 

  66. Lu YC, Crumlin EJ, Veith GM et al (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2:715

    Google Scholar 

  67. Harding JR, Lu Y-C, Tsukada Y et al (2012) Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications. Phys Chem Chem Phys 14:10540–10546

    Article  Google Scholar 

  68. Viswanathan V, Thygesen KS, Hummelshoj JS et al (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 135:214704

    Article  Google Scholar 

  69. Delacourt C, Ati M, Tarascon JM (2011) Measurement of lithium diffusion coefficient in LiyFeSO4F. J Electrochem Soc 158:A741–A749

    Article  Google Scholar 

  70. Meethong N, Huang HYS, Speakman SA et al (2007) Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv Funct Mater 17:1115–1123

    Article  Google Scholar 

  71. Wen CJ, Ho C, Boukamp BA et al (1981) Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: application to ‘LiAl’. Int Met Rev 5:253–268

    Google Scholar 

  72. Xia H, Lu L, Ceder G (2006) Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J Power Sources 159:1422–1427

    Article  Google Scholar 

  73. Zhu YJ, Wang CS (2010) Galvanostatic intermittent titration technique for phase-transformation electrodes. J Phys Chem C 114:2830–2841

    Article  Google Scholar 

  74. Jang YI, Neudecker BJ, Dudney NJ (2001) Lithium diffusion in LixCoO2 (0.45 < x < 0.7) intercalation cathodes. Electrochem Solid-State Lett 4:A74–A77

    Article  Google Scholar 

  75. Levi MD, Aurbach D (1997) Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes. J Phys Chem B 101:4641–4647

    Article  Google Scholar 

  76. Yu P, Popov BN, Ritter JA et al (1999) Determination of the lithium ion diffusion coefficient in graphite. J Electrochem Soc 146:8–14

    Article  Google Scholar 

  77. Levi MD, Aurbach D (2007) The application of electroanalytical methods to the analysis of phase transitions during intercalation of ions into electrodes. J Solid State Electrochem 11:1031–1042

    Article  Google Scholar 

  78. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879–889

    Article  Google Scholar 

  79. Zhong L, Mitchell RR, Liu Y et al (2013) In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett 13:2209–2214

    Article  Google Scholar 

  80. Perng Y-C, Cho J, Membreno D et al (2011) In: 11th international conference on atomic layer deposition, Cambridge, MA, 26–29 June 2011

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR-0819762; by the Ford-MIT Alliance and the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the DOE (DE-AC03-76SF00098 with LBNL); and by the US Department of Energy’s US-China Clean Energy Research Center for Clean Vehicles (Grant DE-PI0000012). This work was performed in part at the Center for Nanoscale Systems (CNS) at Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award number ECS-0335765. B.M.G. acknowledges a National Science Foundation Graduate Research Fellowship and D.G.K. acknowledges a Total Graduate Student Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shao-Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gallant, B.M. et al. (2014). The Kinetics and Product Characteristics of Oxygen Reduction and Evolution in LiO2 Batteries. In: Imanishi, N., Luntz, A., Bruce, P. (eds) The Lithium Air Battery. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8062-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8062-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8061-8

  • Online ISBN: 978-1-4899-8062-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics