Cathode Electrochemistry in Nonaqueous Lithium Air Batteries

  • A. C. LuntzEmail author
  • B. D. McCloskey
  • S. Gowda
  • H. Horn
  • V. Viswanathan


This chapter summarizes the authors’ results and opinions of the electrochemistry occurring at a principally C cathode during Li–O2 discharge and charge. Ideally this reaction is only 2(Li+ + e ) + O2 ↔ Li2O2 that involves 2e /O2 consumed during discharge and 2e /O2 liberated during charge. Using quantitative DEMS and other spectroscopies, however, we find significant other chemistry/electrochemistry occurring as parasitic processes in Li–O2 discharge/charge. Much of this is related to electrolyte stability issues (and is electrolyte specific), while some is related to C stability as a cathode material. Much of the work presented in this chapter is an attempt to isolate and study the ideal Li–O2 electrochemistry in order to answer a fundamental question. Even if there are no parasitic chemical processes or practical cell-dependent limitations, is the Li–O2 electrochemistry sufficient to build a high-energy and high-power battery? In this regard, we report a wide variety of experiments and theory on the mechanism, kinetic overpotentials, and charge transport through Li2O2. We then combine our understanding of these fundamental aspects of the electrochemistry with what we know about limitations (parasitic chemistry and cell limiting properties) to understand observed galvanostatic discharges and charges. We describe origins of the current dependent loss of potential in discharge, the cell sudden death or capacity limitations, and the potential rise during charging. At present, the fundamental Li–O2 electrochemistry appears very promising for ultimate use in a high-energy battery. However, both electrolyte stability and the poor electrical conductivity through the Li2O2 remain as challenges to developing a practical lithium air battery.


Oxygen Reduction Reaction Charge Transport Oxygen Evolution Reaction Charge Cycle Electrolyte Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank their many collaborators, both at IBM and SLAC/Stanford, for their contributions to the work presented here. These include at IBM, Girish Gopalakrishnan, Angela Speidel (VW), Rouven Scheffler (VW), and Greg Wallraff and at SLAC/Stanford, Jens Hummelshøj and Jens Nørskov. In addition, we especially thank Winfried Wilcke for initiating the program in lithium air at IBM and for stimulating interest in this field throughout the world. V. V. also acknowledges support from the US Department of Energy, Basic Energy Sciences, through the SUNCAT Center for Interface Science and Catalysis and for a UTRC fellowship.


  1. 1.
    Baker R (2001) Future directions of membrane gas-separation technology. Membr Technol 2001(138):5–10CrossRefGoogle Scholar
  2. 2.
    Beattie SD, Manolescu DM, Blair SL (2009) High-capacity lithium-air cathodes. J Electrochem Soc 156(1):A44–A47CrossRefGoogle Scholar
  3. 3.
    Black R, Oh SH, Lee J-H et al (2012) Screening for superoxide reactivity in Li-O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134(6):2902–2905CrossRefGoogle Scholar
  4. 4.
    Bryantsev VS, Blanco M (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2(5):379–383CrossRefGoogle Scholar
  5. 5.
    Bryantsev VS, Giordani V, Walker W et al (2011) Predicting solvent stability in aprotic electrolyte Li–air batteries: nucleophilic substitution by the superoxide anion radical (O2). J Phys Chem A 115(44):12399–12409CrossRefGoogle Scholar
  6. 6.
    Chen Y, Freunberger SA, Peng Z et al (2012) Li–O2 battery with a dimethylformamide electrolyte. J Am Chem Soc 134(18):7952–7957CrossRefGoogle Scholar
  7. 7.
    Christensen J, Albertus P, Sanchez-Carrera RS et al (2012) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRefGoogle Scholar
  8. 8.
    Dahl S (2012) Gas cleaning—perspectives from catalytic processes. In: Beyond lithium ion V: symposium on scalable energy storage, Berkeley, CAGoogle Scholar
  9. 9.
    Débart A, Bao J, Armstrong G et al (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182CrossRefGoogle Scholar
  10. 10.
    Fan W, Cui Z, Guo X (2013) Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li–O2 cells. J Phys Chem C 117(6):2623–2627CrossRefGoogle Scholar
  11. 11.
    Freunberger SA, Chen Y, Drewett NE et al (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613CrossRefGoogle Scholar
  12. 12.
    Freunberger SA, Chen Y, Peng Z et al (2011) Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047CrossRefGoogle Scholar
  13. 13.
    Gallant BM, Mitchell RR, Kwabi DG et al (2012) Chemical and morphological changes of Li–O2 battery electrodes upon cycling. J Phys Chem C 116(39):20800–20805CrossRefGoogle Scholar
  14. 14.
    García-Lastra JM, Myrdal JSG, Christensen R et al (2013) DFT + U study of polaronic conduction in Li2O2 and Li2CO3: implications for Li-air batteries. J Phys Chem C 117:5568–5577CrossRefGoogle Scholar
  15. 15.
    Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRefGoogle Scholar
  16. 16.
    Gowda SR, Brunet A, Wallraff GM et al (2012) Implications of CO2 contamination in rechargeable nonaqueous Li–O2 batteries. J Phys Chem Lett 4:276–279Google Scholar
  17. 17.
    Hartmann P, Bender C, Vračar M et al (2012) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232CrossRefGoogle Scholar
  18. 18.
    Hummelshoj JS, Blomqvist J, Datta S et al (2010) Communications: elementary oxygen electrode reactions in the aprotic Li-air battery. J Chem Phys 132(7):071101CrossRefGoogle Scholar
  19. 19.
    Hummelshoj JS, Luntz AC, Norskov JK (2013) Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. J Chem Phys 138(3):034703CrossRefGoogle Scholar
  20. 20.
    Jung H-G, Hassoun J, Park J-B et al (2012) An improved high-performance lithium-air battery. Nat Chem 4(7):579–585CrossRefGoogle Scholar
  21. 21.
    Kang J, Jung YS, Wei S-H et al (2012) Implications of the formation of small polarons in Li2O2 for Li-air batteries. Phys Rev B 85(3):035210CrossRefGoogle Scholar
  22. 22.
    Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J Electroanal Chem 660(2):254–260CrossRefGoogle Scholar
  23. 23.
    Laino T, Curioni A (2012) A new piece in the puzzle of lithium/air batteries: computational study on the chemical stability of propylene carbonate in the presence of lithium peroxide. Chemistry 18(12):3510–3520CrossRefGoogle Scholar
  24. 24.
    Laoire CO, Mukerjee S, Abraham KM et al (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134CrossRefGoogle Scholar
  25. 25.
    Laoire CO, Mukerjee S, Abraham KM et al (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery. J Phys Chem C 114(19):9178–9186CrossRefGoogle Scholar
  26. 26.
    Lim H, Yilmaz E, Byon HR (2012) Real-time XRD studies of Li–O2 electrochemical reaction in nonaqueous lithium–oxygen battery. J Phys Chem Lett 3(21):3210–3215CrossRefGoogle Scholar
  27. 27.
    Lu Y-C, Gasteiger HA, Crumlin E et al (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9):A1016–A1025CrossRefGoogle Scholar
  28. 28.
    Lu Y-C, Gasteiger HA, Parent MC et al (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem Solid State Lett 13(6):A69–A72CrossRefGoogle Scholar
  29. 29.
    Lu Y-C, Shao-Horn Y (2012) Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries. J Phys Chem Lett 4(1):93–99CrossRefGoogle Scholar
  30. 30.
    Lu Y-C, Xu Z, Gasteiger HA et al (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132(35):12170–12171CrossRefGoogle Scholar
  31. 31.
    Luntz AC, Viswanathan V, Voss J et al (2013) Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries. J Phys Chem Lett 4:3494–3499Google Scholar
  32. 32.
    Man IC, Su H-Y, Calle-Vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7):1159–1165CrossRefGoogle Scholar
  33. 33.
    Matteucci S, Yampolskii Y, Freeman BD et al (2006) Transport of gases and vapors in glassy and rubbery polymers. In: Yampolskii Y, Pinnau I, Freeman BD (eds) Materials science of membranes. Wiley, New York, NYGoogle Scholar
  34. 34.
    McCloskey BD, Bethune DS, Shelby RM et al (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J Phys Chem Lett 2(10):1161–1166CrossRefGoogle Scholar
  35. 35.
    McCloskey BD, Bethune DS, Shelby RM et al (2012) Limitations in rechargeability of Li-O2 batteries and possible origins. J Phys Chem Lett 3:3043–3047Google Scholar
  36. 36.
    McCloskey BD, Scheffler R, Speidel A et al (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041CrossRefGoogle Scholar
  37. 37.
    McCloskey BD, Scheffler R, Speidel A et al (2012) On the mechanism of nonaqueous Li–O2 electrochemistry on C and its kinetic overpotentials: some implications for Li–air batteries. J Phys Chem C 116(45):23897–23905CrossRefGoogle Scholar
  38. 38.
    McCloskey BD, Speidel A, Scheffler R et al (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3(8):997–1001CrossRefGoogle Scholar
  39. 39.
    Meini S, Piana M, Beyer H et al (2012) Effect of carbon surface area on first discharge capacity of Li-O2 cathodes and cycle-life behavior in ether-based electrolytes. J Electrochem Soc 159(12):A2135–A2142CrossRefGoogle Scholar
  40. 40.
    Meini S, Piana M, Tsiouvaras N et al (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid State Lett 15(4):A45–A48CrossRefGoogle Scholar
  41. 41.
    Mizuno F, Takechi K, Higashi S et al (2013) Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent. J Power Sources 228:47–56CrossRefGoogle Scholar
  42. 42.
    Norskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  43. 43.
    Ong SP, Mo Y, Ceder G (2012) Low hole polaron migration barrier in lithium peroxide. Phys Rev B 85(8):081105CrossRefGoogle Scholar
  44. 44.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z et al (2013) The carbon electrode in non-aqueous Li-O2 cells. J Am Chem Soc 135:494–500CrossRefGoogle Scholar
  45. 45.
    Peng Z, Freunberger SA, Chen Y et al (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566CrossRefGoogle Scholar
  46. 46.
    Peng Z, Freunberger SA, Hardwick LJ et al (2011) Oxygen reactions in a non-aqueous Li(+) electrolyte. Angew Chem Int Ed 50(28):6351–6355CrossRefGoogle Scholar
  47. 47.
    Radin MD, Rodriguez JF, Tian F et al (2012) Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. J Am Chem Soc 134(2):1093–1103CrossRefGoogle Scholar
  48. 48.
    Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190–A1195CrossRefGoogle Scholar
  49. 49.
    Ryan KR, Trahey L, Ingram BJ et al (2012) Limited stability of ether-based solvents in lithium–oxygen batteries. J Phys Chem C 116(37):19724–19728CrossRefGoogle Scholar
  50. 50.
    Takechi K, Higashi S, Mizuno F et al (2012) Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery. ECS Electrochem Lett 1(1):A27–A29CrossRefGoogle Scholar
  51. 51.
    Takechi K, Shiga T, Asaoka T (2011) A Li-O2/CO2 battery. Chem Commun (Cambridge, UK) 47(12):3463–3465CrossRefGoogle Scholar
  52. 52.
    Veith GM, Nanda J, Delmau LH et al (2012) Influence of lithium salts on the discharge chemistry of Li-air cells. J Phys Chem Lett 3(10):1242–1247CrossRefGoogle Scholar
  53. 53.
    Viswanathan V, Hansen HA, Rossmeisl J et al (2012) Unifying the 2e– and 4e– reduction of oxygen on metal surfaces. J Phys Chem Lett 3(20):2948–2951CrossRefGoogle Scholar
  54. 54.
    Viswanathan V, Nørskov JK, Speidel A et al (2013) Li–O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory. J Phys Chem Lett 4(4):556–560CrossRefGoogle Scholar
  55. 55.
    Viswanathan V, Thygesen KS, Hummelshoj JS et al (2011) Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries. J Chem Phys 135(21):214704CrossRefGoogle Scholar
  56. 56.
    Varley JB, Viswanathan V, Nørskov JK, Luntz AC (2014) Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li–O2 batteries. Energy Environ Sci 7:720–727Google Scholar
  57. 57.
    Wu X, Viswanathan VV, Deyu W et al (2011) Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes. J Power Sources 196(8):3894–3899CrossRefGoogle Scholar
  58. 58.
    Xie B, Lee HS, Li H et al (2008) New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem Commun 10(8):1195–1197CrossRefGoogle Scholar
  59. 59.
    Xu W, Hu J, Engelhard MH et al (2012) The stability of organic solvents and carbon electrode in nonaqueous Li-O2 batteries. J Power Sources 215:240–247CrossRefGoogle Scholar
  60. 60.
    Xu W, Xu K, Viswanathan VV et al (2011) Reaction mechanisms for the limited reversibility of Li-O2 chemistry in organic carbonate electrolytes. J Power Sources 196(22):9631–9639CrossRefGoogle Scholar
  61. 61.
    Xu Y, Shelton WA (2010) O2 reduction by lithium on Au(111) and Pt(111). J Chem Phys 133(2):024703CrossRefGoogle Scholar
  62. 62.
    Zhang D, Li R, Huang T et al (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195(4):1202–1206CrossRefGoogle Scholar
  63. 63.
    Zhang SS, Foster D, Read J (2010) Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Power Sources 195(4):1235–1240CrossRefGoogle Scholar
  64. 64.
    Zhang ZC, Lu J, Assary RS et al (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115(51):25535–25542CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. C. Luntz
    • 1
    • 2
    Email author
  • B. D. McCloskey
    • 1
  • S. Gowda
    • 1
  • H. Horn
    • 1
  • V. Viswanathan
    • 2
    • 3
  1. 1.IBM Research, Almaden Research CenterSan JoseUSA
  2. 2.SUNCAT, SLAC National Accelerator LaboratoryMenlo ParkUSA
  3. 3.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations