Nonaqueous Electrolytes

  • Stefan A. Freunberger
  • Yuhui Chen
  • Fanny Bardé
  • Kensuke Takechi
  • Fuminori MizunoEmail author
  • Peter G. BruceEmail author


The electrolyte in the non-aqueous (aprotic) lithium air battery has a profound influence on the reactions that occur at the anode and cathode, and hence its overall operation on discharge/charge. It must possess a wide range of attributes, exceeding the requirements of electrolytes for Lithium ion batteries by far. The most important additional issues are stability at both anode and cathode in the presence of O2. The known problems with cycling the Li metal/non-aqueous electrolyte interface are further complicated by O2. New and much less understood are the reactions at the O2 cathode/electrolyte interface where the highly reversible formation/decomposition of Li2O2 on discharge/charge is critical for the operation of the non-aqueous lithium air battery. Many aprotic electrolytes exhibit decomposition at the cathode during discharge and charge due to the presence of reactive reduced O2 species affecting potential, capacity and kinetics on discharge and charge, cyclability and calendar life. Identifying suitable electrolytes is one of the key challenges for the non-aqueous lithium air battery at the present time. Following the realisation that cyclability of such cells in the initially used organic carbonate electrolytes is due to back-to-back irreversible reactions the stability of the non-aqueous electrolytes became a major focus of research on rechargeable lithium air batteries. This realisation led to the establishment of a suite of experimental and computational methods capable of screening the stability of electrolytes. These allow for greater mechanistic understanding of the reactivity and guide the way towards designing more stable systems. A range of electrolytes based on ethers, amides, sulfones, ionic liquids and dimethyl sulfoxide have been investigated. All are more stable than the organic carbonates, but not all are equally stable. Even though it was soon realised, by a number of groups, that ethers exhibit side reactions on discharge and charge, they still remain the choice in many studies. To date dimethyl sulfoxide and dimethylacetamide were identified as the most stable electrolytes. In conjunction with the investigation of electrolyte stability the importance of electrode stability became more prominent. The stability of the electrolyte cannot be considered in isolation. Its stability depends on the synergy between electrolyte and electrode. Carbon based electrodes promote electrolyte decomposition and decompose on their own. Although great progress has been made in only a few years, future work on aprotic electrolytes for Li-O2 batteries will need to explore other electrolytes in the quest for yet lower cost, higher safety, stability and low volatility.


Ionic Liquid Propylene Carbonate Electrolyte Decomposition Nonaqueous Electrolyte Differential Electrochemical Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mizuno F, Nakanishi S, Kotani Y et al (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78(5):403–405CrossRefGoogle Scholar
  2. 2.
    Gibian MJ, Sawyer DT, Ungermann T et al (1979) Reactivity of superoxide ion with carbonyl compounds in aprotic solvents. J Am Chem Soc 101(3):640–644CrossRefGoogle Scholar
  3. 3.
    Aurbach D, Daroux M, Faguy P et al (1991) The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J Electroanal Chem 297(1):225–244CrossRefGoogle Scholar
  4. 4.
    Freunberger SA, Chen Y, Peng Z et al (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047CrossRefGoogle Scholar
  5. 5.
    Xu W, Xu K, Viswanathan VV et al (2011) Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J Power Sources 196(22):9631–9639CrossRefGoogle Scholar
  6. 6.
    Xu W, Viswanathan VV, Wang D et al (2011) Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes. J Power Sources 196(8):3894–3899CrossRefGoogle Scholar
  7. 7.
    Veith GM, Dudney NJ, Howe J et al (2011) Spectroscopic characterization of solid discharge products in Li-air cells with aprotic carbonate electrolytes. J Phys Chem C 115(29):14325–14333CrossRefGoogle Scholar
  8. 8.
    Bryantsev VS, Blanco M (2011) Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes. J Phys Chem Lett 2(5):379–383CrossRefGoogle Scholar
  9. 9.
    McCloskey BD, Bethune DS, Shelby RM et al (2011) Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J Phys Chem Lett 2(10):1161–1166CrossRefGoogle Scholar
  10. 10.
    Tsiouvaras N, Meini S, Buchberger I et al (2013) A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li–O2 battery. J Electrochem Soc 160(3):A471–A477CrossRefGoogle Scholar
  11. 11.
    Aurbach D, Gofer Y, Langzam J (1989) The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J Electrochem Soc 136(11):3198–3205CrossRefGoogle Scholar
  12. 12.
    Curran HJ, Gaffuri P, Pitz WJ et al (1998) A comprehensive modeling study of n-heptane oxidation. Combust Flame 114(1–2):149–177CrossRefGoogle Scholar
  13. 13.
    Roberts JL, Calderwood TS, Sawyer DT (1984) Nucleophilic oxygenation of carbon dioxide by superoxide ion in aprotic media to form the peroxydicarbonate(2-) ion species. J Am Chem Soc 106(17):4667–4670CrossRefGoogle Scholar
  14. 14.
    Younesi R, Urbonaite S, Edström K et al (2012) The cathode surface composition of a cycled Li–o2 battery: a photoelectron spectroscopy study. J Phys Chem C 116(39):20673–20680CrossRefGoogle Scholar
  15. 15.
    Peng Z, Freunberger SA, Hardwick LJ et al (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed 50(28):6351–6355CrossRefGoogle Scholar
  16. 16.
    Sawyer DT, Roberts JL (1966) Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes. J Electroanal Chem 12(2):90–101Google Scholar
  17. 17.
    Laoire CO, Mukerjee S, Abraham KM et al (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113(46):20127–20134CrossRefGoogle Scholar
  18. 18.
    Younesi R, Hahlin M, Björefors F et al (2012) Li–O2 battery degradation by lithium peroxide (Li2o2): a model study. Chem Mater 25(1):77–84CrossRefGoogle Scholar
  19. 19.
    Laoire CO, Mukerjee S, Plichta EJ et al (2011) Rechargeable lithium/tegdme-LiPF6/O2 battery. J Electrochem Soc 158(3):A302–A308CrossRefGoogle Scholar
  20. 20.
    Hassoun J, Croce F, Armand M et al (2011) Investigation of the O2 electrochemistry in a polymer electrolyte solid-state cell. Angew Chem Int Ed 50(13):2999–3002CrossRefGoogle Scholar
  21. 21.
    Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051CrossRefGoogle Scholar
  22. 22.
    Oh SH, Nazar LF (2012) Oxide catalysts for rechargeable high-capacity Li–O2 batteries. Adv Energy Mater 2(7):903–910CrossRefGoogle Scholar
  23. 23.
    Jung H-G, Hassoun J, Park J-B et al (2012) An improved high-performance lithium–air battery. Nat Chem 4(7):579–585CrossRefGoogle Scholar
  24. 24.
    Freunberger SA, Chen Y, Drewett NE et al (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613CrossRefGoogle Scholar
  25. 25.
    Mizuno F, Takechi K, Higashi S et al (2013) Cathode reaction mechanism of non-aqueous Li–O2 batteries with highly oxygen radical stable electrolyte solvent. J Power Sources 228:47–56CrossRefGoogle Scholar
  26. 26.
    Bardé F, Chen Y, Schaltin S et al (2013) Sulfone-based electrolytes for non-aqueous Li-O2 batteries (submitted)Google Scholar
  27. 27.
    Walker W, Giordani V, Uddin J et al (2013) A rechargeable Li–O2 battery using a lithium nitrate/n, n-dimethylacetamide electrolyte. J Am Chem Soc 135(6):2076–2079CrossRefGoogle Scholar
  28. 28.
    Trahan MJ, Mukerjee S, Plichta EJ et al (2013) Studies of Li-air cells utilizing dimethyl sulfoxide-based electrolyte. J Electrochem Soc 160(2):A259–A267CrossRefGoogle Scholar
  29. 29.
    Peng Z, Freunberger SA, Chen Y et al (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566CrossRefGoogle Scholar
  30. 30.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z et al (2013) A stable cathode for the aprotic Li–O2 battery. Nat Mater. doi: 10.1038/nmat3737 Google Scholar
  31. 31.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z et al (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135(1):494–500CrossRefGoogle Scholar
  32. 32.
    Mizuno F, Nakanishi S, Shirasawa A et al (2011) Design of non-aqueous liquid electrolytes for rechargeable Li-O2 batteries. Electrochemistry 79(11):876–881CrossRefGoogle Scholar
  33. 33.
    Bryantsev V (2012) Calculation of solvation free energies of Li+ and O2 ions and neutral lithium–oxygen compounds in acetonitrile using mixed cluster/continuum models. Theor Chem Acc 131(7):1–11Google Scholar
  34. 34.
    Bryantsev VS, Giordani V, Walker W et al (2011) Predicting solvent stability in aprotic electrolyte Li–air batteries: nucleophilic substitution by the superoxide anion radical (O2 •–). J Phys Chem A 115(44):12399–12409CrossRefGoogle Scholar
  35. 35.
    Assary RS, Curtiss LA, Redfern PC et al (2011) Computational studies of polysiloxanes: oxidation potentials and decomposition reactions. J Phys Chem C 115(24):12216–12223CrossRefGoogle Scholar
  36. 36.
    Laino T, Curioni A (2011) Toward the understanding of chemical degradation of aprotic solvents for Li-air batteries. Abstr Pap Am Chem Soc 242:111Google Scholar
  37. 37.
    Bryantsev VS, Faglioni F (2012) Predicting autoxidation stability of ether- and amide-based electrolyte solvents for Li–air batteries. J Phys Chem A 116(26):7128–7138CrossRefGoogle Scholar
  38. 38.
    Bryantsev VS, Uddin J, Giordani V et al (2013) The identification of stable solvents for nonaqueous rechargeable Li-air batteries. J Electrochem Soc 160(1):A160–A171CrossRefGoogle Scholar
  39. 39.
    Allen CJ, Mukerjee S, Plichta EJ et al (2011) Oxygen electrode rechargeability in an ionic liquid for the Li–air battery. J Phys Chem Lett 2(19):2420–2424CrossRefGoogle Scholar
  40. 40.
    Laoire CO, Mukerjee S, Abraham KM et al (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery. J Phys Chem C 114(19):9178–9186CrossRefGoogle Scholar
  41. 41.
    Monaco S, Arangio AM, Soavi F et al (2012) An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries. Electrochim Acta 83:94–104CrossRefGoogle Scholar
  42. 42.
    Takechi K, Higashi S, Mizuno F et al (2012) Stability of solvents against superoxide radical species for the electrolyte of lithium-air battery. ECS Electrochem Lett 1(1):A27–A29CrossRefGoogle Scholar
  43. 43.
    Zhang J-G, Xu W, Xiao J et al (2012) Critical components of rechargeable Li-air batteries. ECS Meeting Abstracts MA2012-02(11):1171Google Scholar
  44. 44.
    Herranz J, Garsuch A, Gasteiger HA (2012) Using rotating ring-disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li-air battery electrolytes. J Phys Chem C 116(36):19084–19094CrossRefGoogle Scholar
  45. 45.
    Shao Y, Xu W, Ding F et al (2012) Electrochemical investigation on stable nonaqueous electrolytes for rechargeable Li-air batteries. ECS Meeting Abstracts 584Google Scholar
  46. 46.
    Dietzel PDC, Kremer RK, Jansen M (2004) Tetraorganylammonium superoxide compounds: close to unperturbed superoxide ions in the solid state. J Am Chem Soc 126(14):4689–4696CrossRefGoogle Scholar
  47. 47.
    Chen Y, Freunberger SA, Peng Z et al (2012) Li–O2 battery with a dimethylformamide electrolyte. J Am Chem Soc 134(18):7952–7957CrossRefGoogle Scholar
  48. 48.
    Hartmann P, Bender CL, Vračar M et al (2012) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228–232CrossRefGoogle Scholar
  49. 49.
    Black R, Oh SH, Lee J-H et al (2012) Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2/LiOH crystallization. J Am Chem Soc 134(6):2902–2905CrossRefGoogle Scholar
  50. 50.
    Sharon D, Etacheri V, Garsuch A et al (2012) On the challenge of electrolyte solutions for Li–air batteries: monitoring oxygen reduction and related reactions in polyether solutions by spectroscopy and EQCM. J Phys Chem Lett 4(1):127–131CrossRefGoogle Scholar
  51. 51.
    Nasybulin E, Xu W, Engelhard MH et al (2013) Effects of electrolyte salts on the performance of Li–O2 batteries. J Phys Chem C 117(6):2635–2645CrossRefGoogle Scholar
  52. 52.
    Veith GM, Nanda J, Delmau LH et al (2012) Influence of lithium salts on the discharge chemistry of Li–air cells. J Phys Chem Lett 3(10):1242–1247CrossRefGoogle Scholar
  53. 53.
    Leskes M, Drewett NE, Hardwick LJ et al (2012) Direct detection of discharge products in lithium–oxygen batteries by solid-state NMR spectroscopy. Angew Chem 124(34):8688–8691CrossRefGoogle Scholar
  54. 54.
    Huff LA, Rapp JL, Zhu L et al (2013) Identifying lithium–air battery discharge products through 6Li solid-state MAS and 1H–13C solution NMR spectroscopy. J Power Sources 235:87–94CrossRefGoogle Scholar
  55. 55.
    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRefGoogle Scholar
  56. 56.
    Read J (2006) Ether-based electrolytes for the lithium/oxygen organic electrolyte battery. J Electrochem Soc 153(1):A96–A100CrossRefGoogle Scholar
  57. 57.
    Lu Y-C, Kwabi DG, Yao KPC et al (2011) The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ Sci 4:2999–3007CrossRefGoogle Scholar
  58. 58.
    Mitchell RR, Gallant BM, Thompson CV et al (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4(8):2952–2958CrossRefGoogle Scholar
  59. 59.
    Meini S, Piana M, Tsiouvaras N et al (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries. Electrochem Solid State Lett 15(4):A45–A48CrossRefGoogle Scholar
  60. 60.
    Zhang Z, Lu J, Assary RS et al (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115(51):25535–25542CrossRefGoogle Scholar
  61. 61.
    Curtiss LA, Lau KC, Redfern P et al (2011) Computational studies of electrolyte stability for Li-air batteries. Abstr Pap Am Chem Soc 242:110Google Scholar
  62. 62.
    McCloskey BD, Speidel A, Scheffler R et al (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3:997–1001CrossRefGoogle Scholar
  63. 63.
    Wang H, Xie K (2012) Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li–O2 batteries. Electrochim Acta 64:29–34CrossRefGoogle Scholar
  64. 64.
    McCloskey BD, Scheffler R, Speidel A et al (2011) On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries. J Am Chem Soc 133(45):18038–18041CrossRefGoogle Scholar
  65. 65.
    Ryan KR, Trahey L, Ingram BJ et al (2012) Limited stability of ether-based solvents in lithium–oxygen batteries. J Phys Chem C 116(37):19724–19728CrossRefGoogle Scholar
  66. 66.
    Younesi R, Hahlin M, Treskow M et al (2012) Ether based electrolyte, LiB(CN)4 salt and binder degradation in the Li–O2 battery studied by hard X-ray photoelectron spectroscopy (HAXPES). J Phys Chem C 116(35):18597–18604CrossRefGoogle Scholar
  67. 67.
    Li F, Zhang T, Yamada Y et al (2012) Enhanced cycling performance of Li–O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes. Adv Energy Mater 3(4):532–538CrossRefGoogle Scholar
  68. 68.
    Freunberger SA, Chen Y, Drewett NE et al (2011) Die Lithium-Sauerstoff-Batterie mit etherbasierten Elektrolyten. Angew Chem 123(37):8768–8772CrossRefGoogle Scholar
  69. 69.
    Clover AM (1922) The autoxidation of ethyl ether. J Am Chem Soc 44(5):1107–1118CrossRefGoogle Scholar
  70. 70.
    Rein H (1950) Über das Tetrahydrofuran-peroxyd. Angew Chem 62(5):120CrossRefGoogle Scholar
  71. 71.
    Aurbach D, Zinigrad E, Cohen Y et al (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148(3–4):405–416CrossRefGoogle Scholar
  72. 72.
    Assary RS, Lu J, Du P et al (2012) The effect of oxygen crossover on the anode of a Li–O2 battery using an ether-based solvent: insights from experimental and computational studies. ChemSusChem 6(1):51–55CrossRefGoogle Scholar
  73. 73.
    Ernst S, Aldous L, Compton RG (2011) The electrochemical reduction of oxygen at boron-doped diamond and glassy carbon electrodes: a comparative study in a room-temperature ionic liquid. J Electroanal Chem 663(2):108–112CrossRefGoogle Scholar
  74. 74.
    Martiz B, Keyrouz R, Gmouh S et al (2004) Superoxide-stable ionic liquids: new and efficient media for electrosynthesis of functional siloxanes. Chem Commun 6:674–675CrossRefGoogle Scholar
  75. 75.
    Buzzeo MC, Klymenko OV, Wadhawan JD et al (2003) Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: One-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide. J Phys Chem A 107(42):8872–8878CrossRefGoogle Scholar
  76. 76.
    Cecchetto L, Salomon M, Scrosati B et al (2012) Study of a Li–air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid. J Power Sources 213:233–238CrossRefGoogle Scholar
  77. 77.
    Zhang D, Li R, Huang T et al (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195(4):1202–1206CrossRefGoogle Scholar
  78. 78.
    Garsuch A, Badine DM, Leitner K et al (2011) Investigation of various ionic liquids and catalyst materials for lithium-oxygen batteries. Z Phys Chem 225:1–13CrossRefGoogle Scholar
  79. 79.
    Cui ZH, Fan WG, Guo XX (2013) Lithium–oxygen cells with ionic-liquid-based electrolytes and vertically aligned carbon nanotube cathodes. J Power Sources 235:251–255CrossRefGoogle Scholar
  80. 80.
    Zhang T, Zhou H (2012) From Li–O2 to Li–air batteries: carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons, ions, and oxygen. Angew Chem Int Ed 51(44):11062–11067CrossRefGoogle Scholar
  81. 81.
    Sawyer DT, Valentine JS (1981) How super is superoxide? Acc Chem Res 14(12):393–400CrossRefGoogle Scholar
  82. 82.
    Maricle DL, Hodgson WG (1965) Reduction of oxygen to superoxide anion in aprotic solvents. Anal Chem 37(12):1562–1565CrossRefGoogle Scholar
  83. 83.
    Peover ME, White BS (1966) Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion. Electrochim Acta 11(8):1061–1067CrossRefGoogle Scholar
  84. 84.
    Oh SH, Black R, Pomerantseva E et al (2012) Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. Nat Chem 4(12):1004–1010CrossRefGoogle Scholar
  85. 85.
    Zhang X, Wang L (2012) A stable sulfone based electrolyte for high performance rechargeable Li–O2 batteries. Chem Commun 48:11674–11676CrossRefGoogle Scholar
  86. 86.
    Xu D, Wang Z-L, Xu J-J et al (2012) Novel DMSO-based electrolyte for high performance rechargeable Li–O2 batteries. Chem Commun 48(55):6948–6950CrossRefGoogle Scholar
  87. 87.
    Xu K, Angell CA (1998) High anodic stability of a new electrolyte solvent: unsymmetric noncyclic aliphatic sulfone. J Electrochem Soc 145(4):L70–L72CrossRefGoogle Scholar
  88. 88.
    Sun X-G, Angell CA (2005) New sulfone electrolytes for rechargeable lithium batteries: part I. Oligoether-containing sulfones. Electrochem Commun 7(3):261–266CrossRefGoogle Scholar
  89. 89.
    Abouimrane A, Belharouak I, Amine K (2009) Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem Commun 11(5):1073–1076CrossRefGoogle Scholar
  90. 90.
    Merritt MV, Sawyer DT (1970) Electrochemical studies of the reactivity of superoxide ion with several alkyl halides in dimethyl sulfoxide. J Org Chem 35(7):2157–2159CrossRefGoogle Scholar
  91. 91.
    Andrieux CP, Hapiot P, Savéant JM (1985) Electron transfer coupling of diffusional pathways. Homogeneous redox catalysis of dioxygen reduction by the methylviologen cation radical in acidic dimethylsulfoxide. J Electroanal Chem Interfacial Electrochem 189(1):121–133CrossRefGoogle Scholar
  92. 92.
    Chen Y, Freunberger SA, Peng Z et al (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5(6):489–494CrossRefGoogle Scholar
  93. 93.
    Sharon D, Afri M, Noked M et al (2013) Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen. J Phys Chem Lett 4:3115–3119CrossRefGoogle Scholar
  94. 94.
    McCloskey BD, Valery A, Luntz AC et al (2013) Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li–O2 batteries. J Phys Chem Lett 4:2989–2993CrossRefGoogle Scholar
  95. 95.
    Oh SH, Yim T, Ekaterina P et al (2011) Decomposition reaction of lithium bis(oxalato)borate in the rechargeable lithium-oxygen cell. Electrochem Solid State Lett 14(12):A185–A188CrossRefGoogle Scholar
  96. 96.
    Younesi R, Hahlin M, Edström K (2013) Surface characterization of the carbon cathode and the lithium anode of Li–O2 batteries using LiClO4 or LiBOB salts. ACS Appl Mater Interfaces 5(4):1333–1341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Stefan A. Freunberger
    • 1
  • Yuhui Chen
    • 2
  • Fanny Bardé
    • 3
  • Kensuke Takechi
    • 4
  • Fuminori Mizuno
    • 5
    • 6
    Email author
  • Peter G. Bruce
    • 2
    Email author
  1. 1.Christian Doppler Laboratory for Lithium Batteries, Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  2. 2.School of ChemistryUniversity of St AndrewsSt AndrewsUK
  3. 3.Advanced Technology 1, Toyota Motor Europe NV/SAZaventemBelgium
  4. 4.Advanced Battery Laboratory, Toyota Central R&D Laboratories, Inc.NagakuteJapan
  5. 5.Battery Research DivisionToyota Motor CorporationSusonoJapan
  6. 6.Materials Research DepartmentToyota Research Institute of North AmericaAnn ArborUSA

Personalised recommendations