Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover The Lithium Air Battery

Abstract

Lithium air rechargeable batteries are now attracting growing as possible power sources for electric vehicles (EVs), because the battery system has a potential to develop a high energy density battery comparable with an internal conversion engine. A prototype rechargeable lithium air battery was proposed by Abraham and Jang in 1996 and Bruce and coworkers reported a successful result for the reversibility of the lithium air batteries using a conventional nonaqueous electrolyte and a catalyst in 2006. After that, many reports have been presented on the cell performance, stability of the electrolyte, and the electrode reaction mechanism. However, at present, no technology basis exists to superior the high optimistic energy density. Moreover, capacities for high power density and extended deep cycling required for the EV application have not shown. In this chapter, the realistic specific energy density of the rechargeable lithium air batteries is first presented. We emphasized on the comparison with that of the conventional rechargeable batteries, which presented the conversion yield of the ratio of the energy density of the practical cell and the calculated one. As the chemistry of the lithium air batteries has not been established, the brief history of the lithium air battery research was introduced. On the last part of the chapter, the key issues for realizing the high energy and power density lithium air batteries were discussed, including the comparison of nonaqueous and aqueous lithium air systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi S, Higuchi T, Ashimura S et al (1979) Report of the Government Industrial Research Institute, Osaka No. 354

    Google Scholar 

  2. Kalhammer FR (1999) Batteries for electric and hybrid vehicles recent development progress. Report for State of California Air Resources Board, Sacramento, CA

    Google Scholar 

  3. Terada N (2000) In: 11th electric vehicle symposium

    Google Scholar 

  4. Takeda Y, Kanno R, Tsuji Y et al (1984) Rechargeable lithium/chromium oxide cells. J Electrochem Soc 131:2006–2010

    Article  Google Scholar 

  5. Coleman JR, Bates MW (1968) Power sources 2. In: Collins DH (ed) Proceedings, 6th international symposium, Brighton. Pergamon, New York, p 289

    Google Scholar 

  6. Rauh RD, Abraham KM, Pearson GF et al (1979) Lithium/dissolved sulfur battery with organic electrolyte. J Electrochem Soc 126:523–527

    Article  Google Scholar 

  7. Sion Power. www.sionpower.com

  8. Linden D, Reddy TB (eds) (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  9. Abraham KM, Jang Z (1996) A polymer electrolyte based rechargeable lithium oxygen battery. J Electrochem Soc 143:1–5

    Article  Google Scholar 

  10. Lu YC, Gasteiger HA, Parent MC et al (2010) The Influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem Solid-State Lett 13:A69–A72

    Article  Google Scholar 

  11. Zhang T, Imanishi N, Hasegawa S et al (2008) Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium–air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155:A965–A969

    Article  Google Scholar 

  12. Dahn J (2009) Scalable energy storage: beyond Li-ion. Almaden, San Jose, CA

    Google Scholar 

  13. Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19–29

    Article  Google Scholar 

  14. Peled F (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126:2047–2051

    Article  Google Scholar 

  15. Choi NS, Yao Y, Coi Y et al (2011) One dimensional Si/Sn-based nanowires and nonotubes for lithium-ion energy storage materials. J Mater Chem 21:9825–9840

    Article  Google Scholar 

  16. Littauer EL, Tsai KC (1976) Anodic behavior of lithium in aqueous electrolytes: I. Transient passivation. J Electrochem Soc 123:771–776

    Article  Google Scholar 

  17. Littauer EL, Tsai KC (1977) Corrosion of lithium in aqueous electrolytes. J Electrochem Soc 124:850–855

    Article  Google Scholar 

  18. Bennion DN, Littauer EL (1976) Mathematical model of a lithium-water electrochemical power cell. J Electrochem Soc 123:1462–1469

    Article  Google Scholar 

  19. Batalov NN, Arkhigov GG (1988) Power sources 16, Abstract, p 30

    Google Scholar 

  20. Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149:A1190–A1195

    Article  Google Scholar 

  21. Ogasawara C, Depart A, Holzaplel M et al (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128:1390–1393

    Article  Google Scholar 

  22. Mizuno F, Nakanishi S, Koani Y et al (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochemistry 78:403–405

    Article  Google Scholar 

  23. Freunberger SA, Chen Y, Peng Z et al (2011) Reaction in the rechargeable lithium-O2 battery with alkali carbonate electrolytes. J Am Chem Soc 133:8043–8047

    Article  Google Scholar 

  24. Jung H-G, Hassonu J, Park J-B et al (2012) An improved high-performance lithium-air battery. Nat Chem 4:579–582

    Article  Google Scholar 

  25. Kuboki T, Okuyama T, Ohsaki T et al (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769

    Article  Google Scholar 

  26. Hassoun J, Croce F, Armond M et al (2011) Investigation of the O2 electrochemistry in a polymer electrolyte solid state cell. Angew Chem Int Ed 50:2999–3002

    Article  Google Scholar 

  27. Visco SJ, Nimon E, Katz B, et al (2004) In: 12th international meeting on lithium batteries, Abstract # 53, Nara, Japan

    Google Scholar 

  28. Aono H, Subimoto E, Sadaoka Y et al (1989) Ionic conductivity of the lithium titanium phosphate (Li1+X M X Ti2−X (PO4)3, M = Al, Sc, Y, and La) systems. J Electrochem Soc 136:590–591

    Article  Google Scholar 

  29. Hasegawa S, Imanishi N, Zhang T et al (2009) Study on lithium/air batteries—stability of NASICON type lithium ion conducting glass-ceramics with water. J Power Sources 189:371–377

    Article  Google Scholar 

  30. Shimonishi Y, Zhang T, Imanishi N et al (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solution. J Power Sources 196:5128–5132

    Article  Google Scholar 

  31. Murgan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46:7778–7781

    Article  Google Scholar 

  32. Shimonishi Y, Toda A, Zhang T et al (2011) Synthesis of garnet-type Li7-xLa3Zr2O12 and its stability in aqueous solutions. Solid State Ion 183:48–53

    Article  Google Scholar 

  33. Carlson L, Ojefors L (1980) Bifunctional air electrode for metal-air batteries. J Electrochem Soc 127:525–528

    Article  Google Scholar 

  34. Shimizu Y, Nemoto A, Kyodo T et al (1993) Gas diffusion-type oxygen electrode using perovskite-type oxides for rechargeable metal-air batteries. Denki Kagaku 61:1458–1458

    Google Scholar 

  35. Zhang T, Imanishi N, Shimonishi Y et al (2010) A novel high energy density rechargeable lithium/air battery. Chem Commun 48:1661–1663

    Article  Google Scholar 

  36. Zhang T, Imanishi N, Hasegawa S et al (2009) Water-stable lithium anode with three-layer construction for aqueous lithium-air secondary batteries. Electrochem Solid-State Lett 12:A132–A135

    Article  Google Scholar 

  37. Suntvick J, Gasteiger HA, Yabuuchi N et al (2011) Design principle for oxygen reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem 3:546–550

    Article  Google Scholar 

  38. Cho J (2010) Porous Si anode materials for lithium rechargeable batteries. J Mater Chem 26:4009–4014

    Article  Google Scholar 

  39. Younsi SQ, Cioseka K, Elstrom K (2008) In: 214th meeting of ECS, Abstract #465, Honolulu, HI

    Google Scholar 

  40. Zhang D, Li R, Hung T et al (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195:1202–1206

    Article  Google Scholar 

  41. Zhang T, Imanishi N, Hirano A et al (2011) Stability of Li/polymer electrolyte-ionic liquid composite lithium conducting glass ceramics in an aqueous electrolyte. Electrochem Solid-State Lett 14:A45–A48

    Article  Google Scholar 

  42. Liu S, Imanishi N, Zhang T et al (2010) Lithium dendrite formation in Li/poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/Li cells. J Electrochem Soc 157:A1092–A1098

    Article  Google Scholar 

  43. Park HE, Hong CH, Yoon WY (2008) The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. J Power Sources 178:765–768

    Article  Google Scholar 

  44. Puech L, Cantau C, Vinatier P et al (2012) Elaboration and characterization of a free standing LiSICON membrane for aqueous lithium–air battery. J Power Sources 214:330–336

    Article  Google Scholar 

  45. Andrei P, Zheng PJ, Handrickson M et al (2010) Some possible approaches for improving the energy density of Li-air batteries. J Electrochem Soc 157:A1287–A1295

    Article  Google Scholar 

  46. Zhang JF, Liang BY, Hendricken M et al (2008) Bifunctional air electrode for metal-air batteries. J Electrochem Soc 155:A432–A437

    Article  Google Scholar 

  47. Bealttle SD, Manoleseu DM, Blair SL (2009) High-capacity lithium–air cathodes. J Electrochem Soc 156:A44–A47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, O. (2014). Introduction. In: Imanishi, N., Luntz, A., Bruce, P. (eds) The Lithium Air Battery. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8062-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8062-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8061-8

  • Online ISBN: 978-1-4899-8062-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics