Skip to main content

Other Support Nanomaterials

  • Chapter
  • First Online:

Part of the book series: Nanostructure Science and Technology ((NST,volume 170))

Abstract

Corrosion of carbon supports has been identified as one of the major factors hampering the durability of fuel cell electrocatalysts. In Chap. 5 we have seen that carbon support corrosion mainly occurs at the fuel cell cathode and is accelerated by the presence, even in traces, of hydrogen peroxide.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Nitrogen containing carbon nanotubes as supports for Pt—alternate anodes for fuel cell applications. Electrochem. Commun. 7, 905 (2005)

    Google Scholar 

  2. X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 158, 154 (2006)

    Google Scholar 

  3. A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 22, 2392 (2006)

    Google Scholar 

  4. F.T. Bacon, Fuel cells: Will they soon become a major source of electrical energy? Nature 186, 589 (1960)

    Google Scholar 

  5. V. Bambagioni et al., Energy efficiency enhancement of ethanol electrooxidation on Pd-CeO 2/C in passive and active polymer electrolyte-membrane fuel cells. ChemSusChem 5, 1266 (2012)

    Google Scholar 

  6. A.S. Fialkov, Carbon application in chemical power sources. Russ. J. Electrochem. 36, 345 (2000)

    Google Scholar 

  7. A.S. Fialkov, V.D. Chekanova, New graphitic material, Steklouglerod. Sov Plast, 76 ( 1973)

    Google Scholar 

  8. Y.J. Wang, D.P. Wilkinson, J. Zhang, Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 111, 7625 (2011)

    Google Scholar 

  9. R.F. Bartholomew, D.R. Frankl, Electrical properties of some titanium oxides. Physical Rev. 187, 828 (1969).

    Google Scholar 

  10. F.C. Walsh, R.G.A. Wills, The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim. Acta 55, 6342 (2010)

    Google Scholar 

  11. K. Kolbrecka, J. Przyluski, Sub-stoichiometric titanium oxides as ceramic electrodes for oxygen evolution-structural aspects of the voltammetric behaviour of TinO2n-1. Electrochim. Acta 39, 1591 (1994)

    Google Scholar 

  12. G. Chen, S.R. Bare, T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149, A1092 (2002))

    Google Scholar 

  13. T. Ioroi, Z. Siroma, N. Fujiwara, S.I. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183 (2005)

    Google Scholar 

  14. T. Ioroi et al., Stability of corrosion-resistant Magńli-phase Ti4O 7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155, B321 (2008)

    Google Scholar 

  15. L. Adamczyk et al., Effective charge transport in poly (3,4-ethylenedioxythiophene) based hybrid films containing polyoxometallate redox centers. J. Electrochem. Soc. 152, E98 (2005)

    Google Scholar 

  16. E. Slavcheva et al., Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction. Electrochim. Acta 50, 5444 (2005)

    Google Scholar 

  17. L.M. Vračar, N.V. Krstajić, V.R. Radmilović, M.M. Jakšić, Electrocatalysis by nanoparticles - Oxygen reduction on Ebonex/Pt electrode. J. Electroanal. Chem. 587, 99 (2006)

    Google Scholar 

  18. N.V. Krstajic et al., Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions. Surf. Sci. 601, 1949 (2007)

    Google Scholar 

  19. S.Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 131, 13898 (2009)

    Google Scholar 

  20. C.-C. Shih, J.-R. Chang, Pt/C stabilization for catalytic wet-air oxidation: Use of grafted TiO2. J. Catal 240, 137 (2006)

    Google Scholar 

  21. L. Jiang, L. Colmenares, Z. Jusys, G.Q. Sun, R.J. Behm, Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio. Electrochim. Acta 53, 377 (2007)

    Google Scholar 

  22. K.W. Park, K.S. Ahn, Y.C. Nah, J.H. Choi, Y.E. Sung, Electrocatalytic enhancement of methanol oxidation at Pt-WOx nanophase electrodes and in situ observation of hydrogen spillover using electrochromism. J. Phys. Chem. B 107, 4352 (2003)

    Google Scholar 

  23. D.-S. Kim, E.F.A. Zeid, Y.-T. Kim, Additive treatment effect of TiO2 as supports for Pt-based electrocatalysts on oxygen reduction reaction activity. Electrochim. Acta 55, 3628 (2010)

    Google Scholar 

  24. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications. Adv. Mater. 18, 2807 (2006)

    Google Scholar 

  25. D. Gong et al., Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001)

    Google Scholar 

  26. M. Wang, D.J. Guo, H.L. Li, High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem. 178, 1996 (2005)

    Google Scholar 

  27. J.M. Macak et al., Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochem. Commun. 7, 1417 (2005)

    Google Scholar 

  28. S.H. Kang, Y.E. Sung, W.H. Smyrl, The effectiveness of sputtered PtCo catalysts on TiO2 nanotube arrays for the oxygen reduction reaction. J. Electrochem. Soc. 155, B1128 (2008)

    Google Scholar 

  29. S.H. Kang, T.Y. Jeon, H.S. Kim, Y.E. Sung, W.H. Smyrl, Effect of annealing PtNi nanophases on extended TiO2 nanotubes for the electrochemical oxygen reduction reaction. J. Electrochem. Soc. 155, B1058 (2008)

    Google Scholar 

  30. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998)

    Google Scholar 

  31. J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006)

    Google Scholar 

  32. A. Mazare, I. Paramasivam, K. Lee, P. Schmuki, Improved water-splitting behaviour of flame annealed TiO2 nanotubes. Electrochem. Commun. 13, 1030 (2011)

    Google Scholar 

  33. C. Xu, Y.A. Shaban, W.B. Ingler Jr, S.U.M. Khan, Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting. Sol. Energy Mater. Sol. Cells 91, 938 (2007)

    Google Scholar 

  34. Y. Mizukoshi, N. Ohtsu, S. Semboshi, N. Masahashi, Visible light responses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodic oxidation. Appl. Catal. B 91, 152 (2009)

    Google Scholar 

  35. S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins, Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3 + and N. J. Am. Chem. Soc. 134, 3659 (2012)

    Google Scholar 

  36. S. Hoang, S. Guo, N.T. Hahn, A.J. Bard, C.B. Mullins, Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 12, 26 (2012)

    Google Scholar 

  37. A. Ghicov et al., Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 6, 1080 (2006)

    Google Scholar 

  38. R.P. Vitiello et al., N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia. Electrochem. Commun. 8, 544 (2006)

    Google Scholar 

  39. G. Wang et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011)

    Google Scholar 

  40. H. Wang et al., Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463 (2012)

    Google Scholar 

  41. M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. Nano Lett. 12, 1503 (2012)

    Google Scholar 

  42. C. Zhang et al., Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells. ChemSusChem 6, 659 (2013)

    Google Scholar 

  43. Y.X. Chen et al., Electrochemical milling and faceting: Size reduction and catalytic activation of palladium nanoparticles. Angewandte Chem. Int. Ed. 51, 8500 (2012)

    Google Scholar 

  44. D. Morris et al., Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys. Rev. B Condens. Matter Mater. Phys. 61, 13445 (2000)

    Google Scholar 

  45. W. Rüdorff, H.H. Luginsland, Z. Anorg, Allg. Chem. 334, 125 (1964)

    Google Scholar 

  46. J. Arbiol et al., Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 92, 853 (2002)

    Google Scholar 

  47. B.L. García, R. Fuentes, J.W. Weidner, Low-temperature synthesis of a PtRu Nb0.1 Ti0.9 O2 electrocatalyst for methanol oxidation. Electrochem. Solid-State Lett. 10, B108 (2007)

    Google Scholar 

  48. K.W. Park, K.S. Seol, Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem. Commun. 9, 2256 (2007)

    Google Scholar 

  49. O.E. Haas et al., Synthesis and characterisation of RuxTix-1O2 as a catalyst support for polymer electrolyte fuel cell. J. New Mater. Electrochem. Syst. 11, 9 (2008)

    MathSciNet  Google Scholar 

  50. G. Chen, S.R. Bare, T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc. 149, A1092 (2002)

    Google Scholar 

  51. M.A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode Wo//3. J. Appl. Phys. 48, 1914 (1977)

    Google Scholar 

  52. H. Chhina, S. Campbell, O. Kesler, Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. J. Electrochem. Soc. 154, B533 (2007)

    Google Scholar 

  53. S.A. Abbaro, A.C.C. Tseung, D.B. Hibbert, J. Electrochem. Soc. 127, 1106–110 (1980)

    Google Scholar 

  54. A.C.C. Tseung, L.L. Wong, The preparation and characterization of high performance Ag/C oxygen electrocatalysts. J. Appl. Electrochem. 2, 211 (1972)

    Google Scholar 

  55. X. Cui et al., Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J. Phys. Chem. B 112, 12024 (2008)

    Google Scholar 

  56. A.C.C. Tseung, K.Y. Chen, Hydrogen spill-over effect on Pt/WO3 anode catalysts. Catal. Today 38, 439 (1997)

    Google Scholar 

  57. F. Maillard et al., Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim. Acta 52, 1958 (2007)

    Google Scholar 

  58. P.J. Kulesza, L.R. Faulkner, Electrodeposition and characterization of three-dimensional tungsten(VI, V)-oxide films containing spherical Pt microparticles. J. Electrochem. Soc. 136, 707 (1989)

    Google Scholar 

  59. F. Micoud, F. Maillard, A. Gourgaud, M. Chatenet, Unique CO-tolerance of Pt-WOx materials. Electrochem. Commun. 11, 651 (2009)

    Google Scholar 

  60. Y.M. Li, M. Hibino, M. Miyayania, T. Kudo, Proton conductivity of tungsten trioxide hydrates at intermediate temperature. Solid State Ionics 134, 271 (2000)

    Google Scholar 

  61. H. Nakajima, I. Honma, Proton-conducting hybrid solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 148, 607 (2002)

    Google Scholar 

  62. K.W. Park, J.H. Choi, K.S. Ahn, Y.E. Sung, PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method. J. Phys. Chem. B 108, 5989 (2004)

    Google Scholar 

  63. S. Jayaraman, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. J. Phys. Chem. B 109, 22958 (2005)

    Google Scholar 

  64. R. Ganesan, J.S. Lee, An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum. J. Power Sources 157, 217 (2006)

    Google Scholar 

  65. P.J. Barczuk et al., Enhancement of the electrocatalytic oxidation of methanol at Pt/Ru nanoparticles immobilized in different WO3 matrices. Electrochem. Solid-State Lett. 9, E13 (2006)

    Google Scholar 

  66. Q. Wang et al., Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template. J. Power Sources 241, 728 (2013)

    Google Scholar 

  67. J. Rajeswari, B. Viswanathan, T.K. Varadarajan, Tungsten trioxide nanorods as supports for platinum in methanol oxidation. Mater. Chem. Phys. 106, 168 (2007)

    Google Scholar 

  68. T. Maiyalagan, B. Viswanathan, Catalytic activity of platinum/tungsten oxide nanorod electrodes towards electro-oxidation of methanol. J. Power Sources 175, 789 (2008)

    Google Scholar 

  69. S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170 (1978)

    Google Scholar 

  70. Q. Fu, T. Wagner, Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 62, 431 (2007)

    Google Scholar 

  71. E.J. McLeod, V.I. Birss, Sol-gel derived WOx and WOx/Pt films for direct methanol fuel cell catalyst applications. Electrochim. Acta 51, 684 (2005)

    Google Scholar 

  72. K.Y. Chen, A.C.C. Tseung, Effect of nafion dispersion on the stability of Pt/WO3 electrodes. J. Electrochem. Soc. 143, 2703 (1996)

    Google Scholar 

  73. V. Raghuveer, B. Viswanathan, Synthesis, characterization and electrochemical studies of Ti-incorporated tungsten trioxides as platinum support for methanol oxidation. J. Power Sources 144, 1 (2005)

    Google Scholar 

  74. Z. Chen et al., Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells. Electrochem. Commun. 7, 593 (2005)

    Google Scholar 

  75. X.B. Zhu, H.M. Zhang, Y.M. Liang, Y. Zhang, B.L. Yi, A novel PTFE-reinforced multilayer self-humidifying composite membrane for PEM fuel cells. Electrochem. Solid-State Lett. 9, A49 (2006)

    Google Scholar 

  76. L. Wang et al., Pt/SiO2 catalyst as an addition to Nafion/PTFE self-humidifying composite membrane. J. Power Sources 161, 61 (2006)

    Google Scholar 

  77. B. Seger, A. Kongkanand, K. Vinodgopal, P.V. Kamat, Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell. J. Electroanal. Chem. 621, 198 (2008)

    Google Scholar 

  78. O.P. Agnihotri, A.K. Sharma, B.K. Gupta, R. Thangaraj, The effect of tin additions on indium oxide selective coatings. J. Phys. D Appl. Phys. 11, 643 (1978)

    Google Scholar 

  79. H.Y. Yu et al., Surface electronic structure of plasma-treated indium tin oxides. Appl. Phys. Lett. 78, 2595 (2001)

    Google Scholar 

  80. H. Chhina, S. Campbell, O. Kesler, An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J. Power Sources 161, 893 (2006)

    Google Scholar 

  81. S. Shanmugam, D.S. Jacob, A. Gedanken, Solid state synthesis of tungsten carbide nanorods and nanoplatelets by a single-step pyrolysis. J. Phys. Chem. B 109, 19056 (2005)

    Google Scholar 

  82. L. Gao, B.H. Kear, Low temperature carburization of high surface area tungsten powders. Nanostruct. Mater. 5, 555 (1995)

    Google Scholar 

  83. Y. Hatano et al., Solid state reaction between tungsten and amorphous carbon. J. Nucl. Mater. 307–311, 1339 (2002)

    Google Scholar 

  84. H. Chhina, S. Campbell, O. Kesler, Thermal and electrochemical stability of tungsten carbide catalyst supports. J. Power Sources 164, 431 (2007)

    Google Scholar 

  85. H.H. Hwu, J.G. Chen, Potential application of tungsten carbides as electrocatalysts. J. Vacuum Sci. Technol. A Vacuum Surf. Films 21, 1488 (2003)

    Google Scholar 

  86. C.J. Barnett, G.T. Burstein, A.R.J. Kucernak, K.R. Williams, Electrocatalytic activity of some carburised nickel, tungsten and molybdenum compounds. Electrochim. Acta 42, 2381 (1997)

    Google Scholar 

  87. K. Lee, A. Ishihara, S. Mitsushima, N. Kamiya, K.I. Ota, Stability and electrocatalytic activity for oxygen reduction in WC + Ta catalyst. Electrochim. Acta 49, 3479 (2004)

    Google Scholar 

  88. Y. Hara, N. Minami, H. Itagaki, Synthesis and characterization of high-surface area tungsten carbides and application to electrocatalytic hydrogen oxidation. Appl. Catal. A 323, 86 (2007)

    Google Scholar 

  89. Y. Hara, N. Minami, H. Matsumoto, H. Itagaki, New synthesis of tungsten carbide particles and the synergistic effect with Pt metal as a hydrogen oxidation catalyst for fuel cell applications. Appl. Catal. A 332, 289 (2007)

    Google Scholar 

  90. M.K. Jeon, H. Daimon, K.R. Lee, A. Nakahara, S.I. Woo, CO tolerant Pt/WC methanol electro-oxidation catalyst. Electrochem. Commun. 9, 2692 (2007)

    Google Scholar 

  91. N.R. Elezović et al., Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 69, 239 (2012)

    Google Scholar 

  92. F. Mazza, S. Trassatti, Tungsten, titanium, and tantalum carbides and titanium nitrides as electrodes i rednox systems. J. Electrochem. Soc. 110, 847–849 (1963)

    Google Scholar 

  93. W.T. Grubb, D.W. McKee, Boron carbide, a new substrate for fuel cell electrocatalysts. Nature 210, 192 (1966)

    Google Scholar 

  94. D.W. McKee, A.J. Scarpellino Jr, I.F. Danzig, M.S. Pak, Improved electrocatalysts for ammonia fuel cell anodes. Electrochem. Soc. J. 116, 562 (1969)

    Google Scholar 

  95. V. Jalan, D.G. Frost, U.S. Patent 4,795,684, (1989)

    Google Scholar 

  96. I.K. Sung, Christian, M. Mitchell, D.P. Kim, P.J.A. Kenis, Tailored macroporous SiCN and SiC structures for high-temperature fuel reforming. Adv. Funct. Mater. 15, 1336 (2005)

    Google Scholar 

  97. K.A. Schwetz, in Silicon Carbide Based Hard Materials, ed. by R. Riedel. Handbook of Ceramic Hard Materials, vol. 2, (Wiley, Weilheim, 2000) p. 683

    Google Scholar 

  98. M.J. Ledoux, C. Pham-Huu, Silicon carbide a novel catalyst support for heterogeneous catalysis. CATTECH 5, 226 (2001)

    Google Scholar 

  99. A. Honji, T. Mori, Y. Hishinuma, K. Kurita, Platinum supported on silicon carbide as fuel cell electrocatalyst. J. Electrochem. Soc. 135, 917 (1988)

    Google Scholar 

  100. C. Venkateswara Rao, S.K. Singh, B. Viswanathan, Electrochemical performance of nano-SiC prepared in thermal plasma. Indian J. Chem. Sect A 47, 1619 (2008)

    Google Scholar 

  101. V. Jalan, E.T. Taylor, D. Frost, B. Morriseau, in Abstracts of National Fuel Cell Seminar, (1983) p. 127

    Google Scholar 

  102. P. Krawiec, S. Kaskel, Thermal stability of high surface area silicon carbide materials. J. Solid State Chem. 179, 2281 (2006)

    Google Scholar 

  103. M.J. Ledoux, S. Hantzer, C.P. Huu, J. Guille, M.P. Desaneaux, New synthesis and uses of high-specific-surface SiC as a catalytic support that is chemically inert and has high thermal resistance. J. Catal. 114, 176 (1988)

    Google Scholar 

  104. G.Q. Jin, X.Y. Guo, Synthesis and characterization of mesoporous silicon carbide. Microporous Mesoporous Mater. 60, 207 (2003)

    Google Scholar 

  105. J. Parmentier, J. Patarin, J. Dentzer, C. Vix-Guterl, Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase: a new route to produce high surface area SiC. Ceram. Int. 28, 1 (2002)

    Google Scholar 

  106. Z. Liu et al., Low-temperature formation of nanocrystalline β-SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder. Microporous Mesoporous Mater. 82, 137 (2005)

    Google Scholar 

  107. A.H. Lu, W. Schmidt, W. Kiefer, F. Schüth, High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process. J. Mater. Sci. 40, 5091 (2005)

    Google Scholar 

  108. V.G. Pol, S.V. Pol, A. Gedanken, Novel synthesis of high surface area silicon carbide by RAPET (reactions under autogenic pressure at elevated temperature) of organosilanes. Chem. Mater. 17, 1797 (2005)

    Google Scholar 

  109. R.B. Levy, M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547 (1973)

    Google Scholar 

  110. B. Dhandapani, TSt Clair, S.T. Oyama, Simultaneous hydrodesulfurization, hydrodeoxygenation, and hydrogenation with molybdenum carbide. Appl. Catal. A 168, 219 (1998)

    Google Scholar 

  111. E. Furimsky, Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl. Catal. A 240, 1 (2003)

    Google Scholar 

  112. M.K. Datta, P.N. Kumta, Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries. J. Power Sources 165 368 (2007)

    Google Scholar 

  113. S.A.G. Evans et al., Electrodeposition of platinum metal on TiN thin films. Electrochem. Commun. 7, 125 (2005)

    Google Scholar 

  114. Y. Wang, H. Yuan, X. Lu, Z. Zhou, D. Xiao, Electroanalysis 18, 15 (2006)

    MATH  Google Scholar 

  115. H. Cesiulis, M. Ziomek-Moroz, Electrocrystallization and electrodeposition of silver on titanium nitride. J. Appl. Electrochem. 30, 1261 (2000)

    Google Scholar 

  116. T. Nakayama et al., Use of a titanium nitride for electrochemical inactivation of marine bacteria. Environ. Sci. Technol. 32, 798 (1998)

    Google Scholar 

  117. O.T.M. Musthafa, S. Sampath, High performance platinized titanium nitride catalyst for methanol oxidation. Chem Commun, 67 1 (2008)

    Google Scholar 

  118. J. Giner, L. Swette, Oxygen reduction on titanium nitride in alkaline electrolyte. Nature 211, 1291 (1966)

    Google Scholar 

  119. B. Merzougui, M.K. Carpenter, S. Swathirajan, US Patent App. 11/431,979, (2006)

    Google Scholar 

  120. S.T. Oyama (ed.), The Chemistry of Transition Metal Carbides and Nitrides (Springer, New York, 1996)

    Google Scholar 

  121. B. Avasarala, T. Murray, W. Li, P. Haldar, Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells. J. Mater. Chem. 19, 1803 (2009)

    Google Scholar 

  122. B. Avasarala, P. Haldar, Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochim. Acta 55, 9024 (2010)

    Google Scholar 

  123. A.F. Wells, Structural Inorganic Chemistry (Oxford University Press, Oxford, 1984)

    Google Scholar 

  124. R.T. Paine, C.K. Narula, Synthetic routes to boron nitride. Chem. Rev. 90, 73 (1990)

    Google Scholar 

  125. J.C.S. Wu, Z.A. Lin, J.W. Pan, M.H. Rei, A novel boron nitride supported Pt catalyst for VOC incineration. Appl. Catal. A 219, 117 (2001)

    Google Scholar 

  126. C.A. Lin, J.C.S. Wu, J.W. Pan, C.T. Yeh, J. Catal. 210, 39 (2002)

    Google Scholar 

  127. J.A. Perdigon-Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic. J. Solid State Chem. 177, 609 (2004)

    Google Scholar 

  128. E. Antolini, Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B 88, 1 (2009)

    Google Scholar 

  129. E. Antolini, E.R. Gonzalez, Ceramic materials as supports for low-temperature fuel cell catalysts. Solid State Ionics 180, 746 (2009)

    Google Scholar 

  130. T. Ioroi, Z. Siroma, N. Fujiwara, S.I. Yamazaki, K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun. 7, 183 (2005)

    Google Scholar 

  131. T. Ioroi et al., Stability of corrosion-resistant Magńli-phase Ti4O 7-supported PEMFC catalysts at high potentials. J. Electrochem. Soc. 155, B321 (2008)

    Google Scholar 

  132. A.L. Santos, D. Profeti, P. Olivi, Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochim. Acta 50, 2615 (2005)

    Google Scholar 

  133. K.S. Lee et al., Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 258, 143 (2008)

    Google Scholar 

  134. W.J. Zhou et al., Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J. Power Sources 126, 16 (2004)

    Google Scholar 

  135. Z. Jusys et al., Activity of PtRuMeOx (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. J. Power Sources 105, 297 (2002)

    Google Scholar 

  136. Y. Suzuki, A. Ishihara, S. Mitsushima, N. Kamiya, K.I. Ota, Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells. Electrochem. Solid-State Lett. 10, B105 (2007)

    Google Scholar 

  137. S. Zhang et al., The oxidation resistance of tungsten carbide as catalyst support for proton exchange membrane fuel cells. Chin. J. Catal. 28, 109 (2007)

    Google Scholar 

  138. R. Koc, S.K. Kodambaka, Tungsten carbide (WC) synthesis from novel precursors. J. Eur. Ceram. Soc. 20, 1859 (2000)

    Google Scholar 

  139. R. Ganesan, J.S. Lee, Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angewandte Chem. Int. Ed. 44, 6557 (2005)

    Google Scholar 

  140. R. Ganesan, D.J. Ham, J.S. Lee, Platinized mesoporous tungsten carbide for electrochemical methanol oxidation. Electrochem. Commun. 9, 2576 (2007)

    Google Scholar 

  141. D.J. Ham, Y.K. Kim, S.H. Han, J.S. Lee, Pt/WC as an anode catalyst for PEMFC: activity and CO tolerance. Catal. Today 132, 117 (2008)

    Google Scholar 

  142. J.J. Patt, S.K. Bej, L.T. Thompson, Carbide- and nitride-based fuel processing catalysts. Stud. Surf. Sci. Catal. 147, 85 (2004)

    Google Scholar 

  143. J.J. Patt, Carbide and Nitride Catalysts for the Water Gas Shift Reaction (University of Michigan, Michigan, 2003)

    Google Scholar 

  144. J. Patt, D.J. Moon, C. Phillips, L. Thompson, Molybdenum carbide catalysts for water-gas shift. Catal. Lett. 65, 193 (2000)

    Google Scholar 

  145. S.K. Bej, E.S. Ranganathan, L.T. Thompson, Abst. Pap. Am. Chem. S. 225, 327–328 (2003)

    Google Scholar 

  146. L.T. Thompson, S.K. Bej, J.J. Patt, C.H. Kim, US Patent App. 10/698,818, (2005)

    Google Scholar 

  147. E. Antolini, E.R. Gonzalez, Polymer supports for low-temperature fuel cell catalysts. Appl. Catal. A 365, 1 (2009)

    Google Scholar 

  148. D.J. Walton, Electrically conducting polymers. Mater. Des. 11, 142 (1990)

    Google Scholar 

  149. M.C. Lefebvre, Z. Qi, P.G. Pickup, Electronically conducting proton exchange polymers as catalyst supports for proton exchange membrane fuel cells. Electrocatalysis of oxygen reduction, hydrogen oxidation, and methanol oxidation. J. Electrochem. Soc. 146, 2054 (1999)

    Google Scholar 

  150. J. Shan, P.G. Pickup, Characterization of polymer supported catalysts by cyclic voltammetry and rotating disk voltammetry. Electrochim. Acta 46, 119 (2000)

    Google Scholar 

  151. M. Hepel, The electrocatalytic oxidation of methanol at finely dispersed platinum nanoparticles in polypyrrole films. J. Electrochem. Soc. 145, 124 (1998)

    Google Scholar 

  152. K. Bouzek, K.M. Mangold, K. Jüttner, Platinum distribution and electrocatalytic properties of modified polypyrrole films. Electrochim. Acta 46, 661 (2000)

    Google Scholar 

  153. M. Trueba, S.P. Trasatti, S. Trasatti, Electrocatalytic activity for hydrogen evolution of polypyrrole films modified with noble metal particles. Mater. Chem. Phys. 98, 165 (2006)

    Google Scholar 

  154. F.T.A. Vork, L.J.J. Janssen, E. Barendrecht, Oxidation of hydrogen at platinum-polypyrrole electrodes. Electrochim. Acta 31, 1569 (1986)

    Google Scholar 

  155. F.T.A. Vork, E. Barendrecht, The reduction of dioxygen at polypyrrole-modified electrodes with incorporated Pt particles. Electrochim. Acta 35, 135 (1990)

    Google Scholar 

  156. C.S.C. Bose, K. Rajeshwar, Efficient electrocatalyst assemblies for proton and oxygen reduction: the electrosynthesis and characterization of polypyrrole films containing nanodispersed platinum particles. J. Electroanal. Chem. 333, 235 (1992)

    Google Scholar 

  157. W.T. Napporn, H. Laborde, J.M. Léger, C. Lamy, Electro-oxidation of C1 molecules at Pt-based catalysts highly dispersed into a polymer matrix: Effect of the method of preparation. J. Electroanal. Chem. 404, 153 (1996)

    Google Scholar 

  158. P.O. Esteban, J.M. Leger, C. Lamy, E. Genies, Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. J. Appl. Electrochem. 19, 462 (1989)

    Google Scholar 

  159. H. Laborde, J.M. Léger, C. Lamy, Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes part 1: platinum in polyaniline. J. Appl. Electrochem. 24, 219 (1994)

    Google Scholar 

  160. F. Fiçicioğlu, F. Kadirgan, Electrooxidation of methanol on platinum doped polyaniline electrodes: deposition potential and temperature effect. J. Electroanal. Chem. 430, 179 (1997)

    Google Scholar 

  161. K.M. Kost, D.E. Bartak, B. Kazee, T. Kuwana, Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Anal. Chem. 60, 2379 (1988)

    Google Scholar 

  162. H.J. Salavagione, C. Sanchís, E. Morallón, Friendly conditions synthesis of platinum nanoparticles supported on a conducting polymer: methanol electrooxidation. J. Phys. Chem. C 111, 12454 (2007)

    Google Scholar 

  163. C.C. Chen, C.S.C. Bose, K. Rajeshwar, The reduction of dioxygen and the oxidation of hydrogen at polypyrrole film electrodes containing nanodispersed platinum particles. J. Electroanal. Chem. 350, 161 (1993)

    Google Scholar 

  164. D.J. Strike, N.F. De Rooij, M. Koudelka-Hep, M. Ulmann, J. Augustynski, Electrocatalytic oxidation of methanol on platinum microparticles in polypyrrole. J. Appl. Electrochem. 22, 922 (1992)

    Google Scholar 

  165. A.A. Mikhaylova, E.B. Molodkina, O.A. Khazova, V.S. Bagotzky, Electrocatalytic and adsorption properties of platinum microparticles electrodeposited into polyaniline films. J. Electroanal. Chem. 509, 119 (2001)

    Google Scholar 

  166. B.I. Podlovchenko, Y.M. Maksimov, T.D. Gladysheva, E.A. Kolyadko, Electrocatalytic activity of platinum-polyaniline and palladium-polyaniline systems obtained by cycling the electrode potential. Russ. J. Electrochem. 36, 731 (2000)

    Google Scholar 

  167. Z. Qi, M.C. Lefebvre, P.G. Pickup, Electron and proton transport in gas diffusion electrodes containing electronically conductive proton-exchange polymers. J. Electroanal. Chem. 459, 9 (1998)

    Google Scholar 

  168. C.T. Hable, M.S. Wrighton, Electrocatalytic oxidation of methanol and ethanol: a comparison of platinum-tin and platinum-ruthenium catalyst particles in a conducting polyaniline matrix. Langmuir 9, 3284 (1993)

    Google Scholar 

  169. Y.M. Maksimov, T.D. Gladysheva, B.I. Podlovchenko, Electrochemical behavior of platinum-modified polyaniline films in sulfuric acid solutions of carbon monoxide. Russ. J. Electrochem. 37, 554 (2001)

    Google Scholar 

  170. M.L. Bañón, V. López, P. Ocón, P. Herrasti, Poly(o-toluidine). Deposition of platinum and electrocatalytic applications. Synth. Met. 48, 355 (1992)

    Google Scholar 

  171. D. Profeti, P. Olivi, Methanol electrooxidation on platinum microparticles electrodeposited on poly (o-methoxyaniline) films. Electrochim. Acta 49, 4979 (2004)

    Google Scholar 

  172. C. Sivakumar, Finely dispersed Pt nanoparticles in conducting poly(o-anisidine) nanofibrillar matrix as electrocatalytic material. Electrochim. Acta 52, 4182 (2007)

    Google Scholar 

  173. C. Jiang, X. Lin, Preparation of three-dimensional composite of poly(N-acetylaniline) nanorods/platinum nanoclusters and electrocatalytic oxidation of methanol. J. Power Sources 164, 49 (2007)

    Google Scholar 

  174. P.J. Kulesza et al., Electrocatalytic properties of conducting polymer based composite film containing dispersed platinum microparticles towards oxidation of methanol. Electrochim. Acta 44, 2131 (1999)

    Google Scholar 

  175. A. Yassar, J. Roncali, F. Garnier, Preparation and electroactivity of poly(thiophene) electrodes modified by electrodeposition of palladium particles. J. Electroanal. Chem. 255, 53 (1988)

    Google Scholar 

  176. G. Tourillon, F. Garnier, Inclusion of metallic aggregates in organic conducting polymers. A new catalytic system, [poly(3-methylthiophene)-Ag-Pt], for proton electrochemical reduction. J. Phys. Chem. 88, 5281 (1984)

    Google Scholar 

  177. S. Swathirajan, Y.M. Mikhail, Methanol oxidation on platinum-tin catalysts dispersed on poly(3-methyl)thiophene conducting polymer. J. Electrochem. Soc. 139, 2105 (1992)

    Google Scholar 

  178. A. Galal, N.F. Atta, S.A. Darwish, S.M. Ali, Electrodeposited metals at conducting polymer electrodes. II: study of the oxidation of methanol at poly(3-methylthiophene) modified with Pt-Pd co-catalyst. Top. Catal. 47, 73 (2008)

    Google Scholar 

  179. Z. Cai, C.R. Martin, Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J. Am. Chem. Soc. 111, 4138 (1989)

    Google Scholar 

  180. B. Rajesh et al., Template synthesis of conducting polymeric nanocones of poly(3-methylthiophene). J. Phys. Chem. B 108, 10640 (2004)

    Google Scholar 

  181. B. Rajesh et al., Pt particles supported on conducting polymeric nanocones as electro-catalysts for methanol oxidation. J. Power Sources 133, 155 (2004)

    Google Scholar 

  182. Z. Qi, P.G. Pickup, Novel supported catalysts: platinum and platinum oxide nanoparticles dispersed on polypyrrole/polystyrenesulfonate particles. Chem. Commun. 1998, 15 (1998)

    Google Scholar 

  183. C. Arbizzani, M. Biso, E. Manferrari, M. Mastragostino, Methanol oxidation by pEDOT-pSS/PtRu in DMFC. J. Power Sources 178, 584 (2008)

    Google Scholar 

  184. S. Patra, N. Munichandraiah, Electrooxidation of methanol on pt-modified conductive polymer PEDOT. Langmuir 25, 1732 (2009)

    Google Scholar 

  185. J.F. Drillet, R. Dittmeyer, K. Jüttner, Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode. J. Appl. Electrochem. 37, 1219 (2007)

    Google Scholar 

  186. L.M. Huang, C.H. Chen, T.C. Wen, A. Gopalan, Effect of secondary dopants on electrochemical and spectroelectrochemical properties of polyaniline. Electrochim. Acta 51, 2756 (2006)

    Google Scholar 

  187. L.M. Huang, W.R. Tang, T.C. Wen, Spatially electrodeposited platinum in polyaniline doped with poly(styrene sulfonic acid) for methanol oxidation. J. Power Sources 164, 519 (2007)

    Google Scholar 

  188. S. Kim, S.J. Park, Electroactivity of Pt-Ru/polyaniline composite catalyst-electrodes prepared by electrochemical deposition methods. Solid State Ionics 178, 1915 (2008)

    Google Scholar 

  189. F. Bensebaa et al., Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell. J. Phys. Chem. B 109, 15339 (2005)

    Google Scholar 

  190. C. Arbizzani, M. Biso, E. Manferrari, M. Mastragostino, Passive DMFCs with PtRu catalyst on poly(3,4-ethylenedioxythiophene)-polystyrene-4-sulphonate support. J. Power Sources 180, 41 (2008)

    Google Scholar 

  191. B. Rajesh et al., Nanostructured conducting polyaniline tubules as catalyst support for Pt particles for possible fuel cell applications. Electrochem. Solid-State Lett. 7, A404 (2004)

    Google Scholar 

  192. Z. Chen, L. Xu, W. Li, M. Waje, Y. Yan, Polyaniline nanofibre supported platinum nanoelectrocatalysts for direct methanol fuel cells. Nanotechnology 17, 5254 (2006)

    Google Scholar 

  193. H.H. Zhou, S.Q. Jiao, J.H. Chen, W.Z. Wei, Y.F. Kuang, Effects of conductive polyaniline (PANI) preparation and platinum electrodeposition on electroactivity of methanol oxidation. J. Appl. Electrochem. 34, 455 (2004)

    Google Scholar 

  194. B. Rajesh et al., Chem. Commun. 16, 2022 (2003)

    Google Scholar 

  195. J. Li, X. Lin, A composite of polypyrrole nanowire. J. Electrochem. Soc. 154, B1074 (2007)

    Google Scholar 

  196. F.J. Liu, L.M. Huang, T.C. Wen, A. Gopalan, Large-area network of polyaniline nanowires supported platinum nanocatalysts for methanol oxidation. Synth. Met. 157, 651 (2007)

    Google Scholar 

  197. T. Maiyalagan, Electrochemical synthesis, characterization and electro-oxidation of methanol on platinum nanoparticles supported poly(o-phenylenediamine) nanotubes. J. Power Sources 179, 443 (2008)

    Google Scholar 

  198. H. Mizes, E. Conwell, Conduction in ladder polymers. Phys. Rev. B 44, 3963 (1991)

    Google Scholar 

  199. E. Antolini, Composite materials an emerging class of fuel cell catalyst supports. Appl. Catal. B-Environ. 100, 413 (2010)

    Google Scholar 

  200. S. Mokrane, L. Makhloufi, N. Alonso-Vante, Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. J. Solid State Electrochem. 12, 569 (2008)

    Google Scholar 

  201. Z.Z. Zhu, Z. Wang, H.L. Li, Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl. Surf. Sci. 254, 2934 (2008)

    Google Scholar 

  202. Z. Wang, Z.Z. Zhu, J. Shi, H.L. Li, Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film. Appl. Surf. Sci. 253, 8811 (2007)

    Google Scholar 

  203. P. Santhosh, A. Gopalan, K.P. Lee, Gold nanoparticles dispersed polyaniline grafted multiwall carbon nanotubes as newer electrocatalysts: preparation and performances for methanol oxidation. J. Catal. 238, 177 (2006)

    Google Scholar 

  204. Y. Xu, X. Peng, H. Zeng, L. Dai, H. Wu, Study of an anti-poisoning catalyst for methanol electro-oxidation based on PAn-C composite carriers. C. R. Chim. 11, 147 (2008)

    Google Scholar 

  205. H. Gharibi, K. Kakaei, M. Zhiani, J. Phys. Chem. C 114, 3956 (2010)

    Google Scholar 

  206. G. Wu, L. Li, J.H. Li, B.Q. Xu, Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol electrooxidation. Carbon 43, 2579 (2005)

    Google Scholar 

  207. H. Zhao, L. Li, J. Yang, Y. Zhang, Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. J. Power Sources 184, 375 (2008)

    Google Scholar 

  208. J. Shi, Z. Wang, H.L. Li, Electrochemical fabrication of polyaniline/multi-walled carbon nanotube composite films for electrooxidation of methanol. J. Mater. Sci. 42, 539 (2007)

    Google Scholar 

  209. J. Shi, D.J. Guo, Z. Wang, H.L. Li, Electrocatalytic oxidation of formic acid on platinum particles dispersed in SWNT/PANI composite film. J. Solid State Electrochem. 9, 634 (2005)

    Google Scholar 

  210. G. Wu, L. Li, J.H. Li, B.Q. Xu, Methanol electrooxidation on Pt particles dispersed into PANI/SWNT composite films. J. Power Sources 155, 118 (2006)

    Google Scholar 

  211. K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube- And nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J. Appl. Electrochem. 36, 507 (2006)

    Google Scholar 

  212. V. Selvaraj, M. Alagar, Pt and Pt-Ru nanoparticles decorated polypyrrole/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun. 9, 1145 (2007)

    Google Scholar 

  213. H.B. Bae, J.H. Ryu, B.S. Byun, S.H. Jung, S.H. Choi, Facile synthesis of novel Pt-Ru@PPy-MWNT electrocatalysts for direct methanol fuel cells. Curr. Appl. Phys. 10, S44 (2010)

    Google Scholar 

  214. C. Jiang et al., Preparation of the Pt nanoparticles decorated poly(N-acetylaniline)/MWNTs nanocomposite and its electrocatalytic oxidation toward formaldehyde. Electrochim. Acta 54, 1134 (2009)

    Google Scholar 

  215. Z.C. Wang, Z.M. Ma, H.L. Li, Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation. Appl. Surf. Sci. 254, 6521 (2008)

    Google Scholar 

  216. S. Beak, D. Jung, K.S. Nahm, P. Kim, Preparation of highly dispersed Pt on TiO2-modified carbon for the application to oxygen reduction reaction. Catal. Lett. 134, 288 (2010)

    Google Scholar 

  217. J.M. Lee et al., TiO2@carbon core-shell nanostructure supports for platinum and their use for methanol electrooxidation. Carbon 48, 2290 (2010)

    Google Scholar 

  218. D. He, L. Yang, S. Kuang, Q. Cai, Fabrication and catalytic properties of Pt and Ru decorated TiO2{minus 45 degree rule}CNTs catalyst for methanol electrooxidation. Electrochem. Commun. 9, 2467 (2007)

    Google Scholar 

  219. H.L. Pang et al., Preparation of SnO2-CNTs supported Pt catalysts and their electrocatalytic properties for ethanol oxidation. Electrochim. Acta 54, 2610 (2009)

    Google Scholar 

  220. R.S. Hsu, D. Higgins, Z. Chen, Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells. Nanotechnology 21 165705 (2010)

    Google Scholar 

  221. C. Du, M. Chen, X. Cao, G. Yin, P. Shi, A novel CNT@SnO2 core-sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells. Electrochem. Commun. 11, 496 (2009)

    Google Scholar 

  222. M.W. Xu, G.Y. Gao, W.J. Zhou, K.F. Zhang, H.L. Li, Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution. J. Power Sources 175, 217 (2008)

    Google Scholar 

  223. B. Rajesh et al., Pt supported on polyaniline-V2O5 nanocomposite as the electrode material for methanol oxidation. Electrochem. Solid-State Lett. 5, E71 (2002)

    Google Scholar 

  224. T. Maiyalagan, B. Viswanathan, Synthesis, characterization and electrocatalytic activity of Pt supported on poly (3,4-ethylenedioxythiophene)-V2O5 nanocomposites electrodes for methanol oxidation. Mater. Chem. Phys. 121, 165 (2010)

    Google Scholar 

  225. H. Pang et al., Preparation of polyaniline-tin dioxide composites and their application in methanol electro-oxidation. J. Solid State Electrochem. 14, 169 (2010)

    Google Scholar 

  226. S. Niyogi et al., Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lavacchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lavacchi, A., Miller, H., Vizza, F. (2013). Other Support Nanomaterials. In: Nanotechnology in Electrocatalysis for Energy. Nanostructure Science and Technology, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8059-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8059-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8058-8

  • Online ISBN: 978-1-4899-8059-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics