Skip to main content

Factors Affecting Design

  • Chapter
  • First Online:
Nanotechnology in Electrocatalysis for Energy

Abstract

The purpose of this chapter is to introduce the principles driving the design of new electrocatalytic materials. The chapter starts with a review of the main targets defined by the U.S. Department of Energy (DOE) for both fuel cells and electrolyzers. The DOE is the most widely recognized authority in defining the goals for these technologies and periodically releases reports reviewing targets and definitions for fuel cells and hydrogen generation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43 (2012)

    Article  Google Scholar 

  2. M.K. Debe, 2009–2011 Annual Merit Reviews DOE Hydrogen and Fuel Cells and Vehicle Technologies Programs: Advanced Cathode Catalysts and Supports for PEM Fuel Cells, (2011)

    Google Scholar 

  3. R. Borup et al., Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904 (2007)

    Google Scholar 

  4. K.J.J. Mayrhofer et al., Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J. Power Sources 185, 734 (2008)

    Google Scholar 

  5. K.J.J. Mayrhofer, M. Hanzlik, M. Arenz, The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles. Electrochim. Acta 54, 5018 (2009)

    Article  Google Scholar 

  6. M.K. Debe, Effect of electrode surface area distribution on high current density performance of PEM fuel cells. J. Electrochem. Soc. 159, B54 (2012)

    Article  Google Scholar 

  7. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 56, 9 (2005)

    Google Scholar 

  8. K.J.J. Mayrhofer et al., Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim. Acta 53, 3181 (2008)

    Article  Google Scholar 

  9. Y. Garsany, O.A. Baturina, K.E. Swider-Lyons, S.S. Kocha, Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal. Chem. 82, 6321 (2010)

    Article  Google Scholar 

  10. A.J. Bard, L.R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd edn. (Wiley, New York, 2001), pp. xxi, 833 p

    Google Scholar 

  11. F.T. Wagner, Automotive challenges and opportunities for oxygen reduction catalysts. First CARISMA International Conference, La Grande Motte, France, 23 September 2008

    Google Scholar 

  12. F. T. Bacon, Fuel cells: Will they soon become a major source of electrical energy? Nature 186, 589 La Grande Motte, France, 23 September 1960

    Google Scholar 

  13. R. Rizo, E. Herrero, J.M. Feliu, Oxygen reduction reaction on stepped platinum surfaces in alkaline media. Phys. Chem. Chem. Phys. 15, 15416 (2013)

    Google Scholar 

  14. R. Narayanan, M.A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343 (2004)

    Google Scholar 

  15. G.A. Somorjai, Surface science. Science 201, 489 (1978)

    Google Scholar 

  16. F.J. Vidal-Iglesias et al., Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (1 0 0) surfaces. Electrochem. Commun. 6, 1080 (2004)

    Article  Google Scholar 

  17. F. Tao, M. Salmeron, In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171 (2011)

    Article  Google Scholar 

  18. D.L. Feldheim, The new face of catalysis. Science 316, 699 (2007)

    Google Scholar 

  19. Y.-N. Wen, J.-M. Zhang, Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 144, 163 (2007)

    Article  Google Scholar 

  20. C.S. Kong, D.Y. Kim, H.K. Lee, Y.G. Shul, T.H. Lee, Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. J. Power Sources 108, 185 (2002)

    Article  Google Scholar 

  21. H.H. Voss, D.P. Wilkinson, P.G. Pickup, M.C. Johnson, V. Basura, Anode water removal: a water management and diagnostic technique for solid polymer fuel cells. Electrochim. Acta 40, 321 (1995)

    Article  Google Scholar 

  22. D.L. Wood Iii, J.S. Yi, T.V. Nguyen, Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochim. Acta 43, 3795 (1998)

    Google Scholar 

  23. T.V. Nguyen, A gas distributor design for proton-exchange-membrane fuel cells. J. Electrochem. Soc. 143, L103 (1996)

    Article  Google Scholar 

  24. D.M. Bernardi, M.W. Verbrugge, Mathematical model of the solid-polymer-electrolyte fuel cell. J. Electrochem. Soc. 139, 2477 (1992)

    Article  Google Scholar 

  25. Y.W. Rho, O.A. Velev, S. Srinivasan, Mass transport phenomena in proton exchange membrane fuel cells using O2/He, O2/Ar, and O2/N2 mixtures. I. Experimental analysis. J. Electrochem. Soc. 141, 2084 (1994)

    Article  Google Scholar 

  26. M.S. Wilson, J.A. Valerio, S. Gottesfeld, Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim. Acta 40, 355 (1995)

    Article  Google Scholar 

  27. R. Mosdale, S. Srinivasan, Analysis of performance and of water and thermal management in proton exchange membrane fuel cells. Electrochim. Acta 40, 413 (1995)

    Article  Google Scholar 

  28. V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. J. Appl. Electrochem. 26, 297 (1996)

    Article  Google Scholar 

  29. D. Bevers, M. Wöhr, K. Yasuda, K. Oguro, Simulation of a polymer electrolyte fuel cell electrode. J. Appl. Electrochem. 27, 1254 (1997)

    Article  Google Scholar 

  30. L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim. Acta 43, 3675 (1998)

    Article  Google Scholar 

  31. L.R. Jordan et al., Diffusion layer parameters influencing optimal fuel cell performance. J. Power Sources 86, 250 (2000)

    Article  Google Scholar 

  32. E. Passalacqua, G. Squadrito, F. Lufrano, A. Patti, L. Giorgi, Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. J. Appl. Electrochem. 31, 449 (2001)

    Article  Google Scholar 

  33. F.T. Wagner, B. Lakshmanan, M.F. Mathias, Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204 (2010)

    Article  Google Scholar 

  34. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9 (2005)

    Article  Google Scholar 

  35. N.M. Markovic, T.J. Schmidt, V. Stamenkovic, P.N. Ross, Fuel Cells 1, 105 (2001)

    Article  Google Scholar 

  36. J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nature Chem. 1, 37 (2009)

    Article  Google Scholar 

  37. V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32 (2003)

    Google Scholar 

  38. N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183 (2003)

    Article  Google Scholar 

  39. G.J.K. Acres et al., Electrocatalysts for fuel cells. Catal. Today 38, 393 (1997)

    Google Scholar 

  40. G.Q. Lu, A. Wieckowski, Heterogeneous electrocatalysis: a core field of interfacial science. Curr Opin Colloid In 5, 95 (2000)

    Google Scholar 

  41. J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How to make electrocatalysts more active for direct methanol oxidation—Avoid PtRu bimetallic alloys! J. Phys. Chem. B 104, 9772 (2000)

    Google Scholar 

  42. S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, Nanoparticle synthesis and electrocatalytic activity of Pt alloys for direct methanol fuel cells. J. Electrochem. Soc.149, A1299 (2002)

    Google Scholar 

  43. R.P. O’Hayre, Fuel cell fundamentals, (John Wiley & Sons, Hoboken, NJ, 2006), pp. xxii, 409 p

    Google Scholar 

  44. A.K. Shukla, R.K. Raman, Methanol-rusistant oxygen-reduction catalysts for direct methanol fuel celms. Annu. Rev. Mater. Res. 33, 155 (2003)

    Article  Google Scholar 

  45. T. He, E. Kreidler, L. F. Xiong, E. R. Ding, Combinatorial screening and nano-synthesis of platinum binary alloys for oxygen electroreduction. J. Power Sources 165, 87 (2007)

    Google Scholar 

  46. T. He, E. Kreidler, L. Xiong, J. Luo, C.J. Zhong, Alloy electrocatalysts—Combinatorial discovery and nanosynthesis. J. Electrochem. Soc. 153, A1637 (2006)

    Article  Google Scholar 

  47. J. Greeley et al., Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry 1, 552 (2009)

    Article  Google Scholar 

  48. N. Dimakis, M. Cowan, G. Hanson, E. S. Smotkin, Attraction-repulsion mechanism for carbon monoxide adsorption on platinum and platinum-ruthenium Alloys. J. Phys. Chem. C 113, 18730 (2009)

    Google Scholar 

  49. N. Ramaswamy, N. Hakim, S. Mukerjee, Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions. Electrochim. Acta 53, 3279 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lavacchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lavacchi, A., Miller, H., Vizza, F. (2013). Factors Affecting Design. In: Nanotechnology in Electrocatalysis for Energy. Nanostructure Science and Technology, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8059-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8059-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8058-8

  • Online ISBN: 978-1-4899-8059-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics