Skip to main content

Electrochemical Devices for Energy Conversion and Storage

  • Chapter
  • First Online:
Nanotechnology in Electrocatalysis for Energy

Part of the book series: Nanostructure Science and Technology ((NST,volume 170))

  • 1458 Accesses

Abstract

After having reviewed the electrochemical concepts behind electrochemical energy conversion in Chap. 2, here we describe in some detail the architectures for the most commonly used devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Dadda, S. Abboudi, A. Ghezal, Transient two-dimensional model of heat and mass transfer in a PEM fuel cell membrane. Int. J. Hydrogen Energy 38, 7092 (2013)

    Google Scholar 

  2. V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 114, 32–53 (2003)

    Google Scholar 

  3. R.P.O’Hayre, Fuel Cell Fundamentals. (John Wiley & Sons, Hoboken, 2006), pp. xxii, 409 p

    Google Scholar 

  4. M. Eikerling, A.A. Kornyshev, Modelling the performance of the cathode catalyst layer of polymer electrolyte fuel cells. J. Electroanal. Chem. 453, 89 (1998)

    Google Scholar 

  5. S.M. Haile, Fuel cell materials and components. Acta Mater. 51, 5981 (2003)

    Google Scholar 

  6. V. Bambagioni et al., Energy efficiency enhancement of ethanol electrooxidation on Pd–CeO2/C in passive and active polymer electrolyte-membrane fuel cells. ChemSusChem 5, 1266 (2012)

    Google Scholar 

  7. A. Therdthianwong, P. Saenwiset, S. Therdthianwong, Cathode catalyst layer design for proton exchange membrane fuel cells. Fuel 91, 192 (2012)

    Google Scholar 

  8. S. Mekhilef, R. Saidur, A. Safari, Comparative study of different fuel cell technologies. Renew. Sustain Energy Rev. 16, 981 (2012)

    Google Scholar 

  9. U. Bardi, A. Lavacchi, A simple Interpretation of Hubbert’s model of resource exploitation. Energies 2, 646 (2009)

    Google Scholar 

  10. S.H. Seo, C.S. Lee, A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Appl. Energy 87, 2597 (2010)

    Google Scholar 

  11. X. Li, A. Faghri, Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions. J. Power Sources 226, 223 (2013)

    Google Scholar 

  12. D.H. Jung, C.H. Lee, C.S. Kim, D.R. Shin, Performance of a direct methanol polymer electrolyte fuel cell. J. Power Sources 71, 169 (1998)

    Google Scholar 

  13. S. Hikita, K. Yamane, Y. Nakajima, Measurement of methanol crossover in direct methanol fuel cell. JSAE Rev. 22, 151 (2001)

    Google Scholar 

  14. J. Liu, D. Liu, H.Y. Bai, P.S. Wu, X. Han, A new strategy for optimizing the parameters updating algorithm of fuzzy neural controller. Soft. Comput. 10, 61 (2006)

    Google Scholar 

  15. G. Jewett, Z. Guo, A. Faghri, Water and air management systems for a passive direct methanol fuel cell. J. Power Sources 168, 434 (2007)

    Google Scholar 

  16. C. Lamy et al., Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, 283 (2002)

    Google Scholar 

  17. R. Dillon, S. Srinivasan, A.S. Aricò, V. Antonucci, International activities in DMFC R&D: Status of technologies and potential applications. J. Power Sources 127, 112 (2004)

    Google Scholar 

  18. T.S. Zhao, R. Chen, W.W. Yang, C. Xu, Small direct methanol fuel cells with passive supply of reactants. J. Power Sources 191, 185 (2009)

    Google Scholar 

  19. D. Pimentel, T. Patzek, Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat. Resour. Res. 14, 65 (2005)

    Google Scholar 

  20. D. Scordia, S.L. Cosentino, J.-W. Lee, T.W. Jeffries, Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass Bioenergy 35, 3018 (2011)

    Google Scholar 

  21. A.E. Farrell et al., Ethanol can contribute to energy and environmental goals. Science 311, 506 (2006)

    Google Scholar 

  22. L. An, T.S. Zhao, Q.X. Wu, L. Zeng, Comparison of different types of membrane in alkaline direct ethanol fuel cells. Int. J. Hydrogen Energy 37, 14536 (2012)

    Google Scholar 

  23. E. Antolini, E.R. Gonzalez, Alkaline direct alcohol fuel cells. J. Power Sources 195, 3431 (2010)

    Google Scholar 

  24. L. An, T.S. Zhao, S.Y. Shen, Q.X. Wu, R. Chen, Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int. J. Hydrogen Energy 35, 4329 (2010)

    Google Scholar 

  25. L. An, T.S. Zhao, R. Chen, Q.X. Wu, A novel direct ethanol fuel cell with high power density. J. Power Sources 196, 6219 (2011)

    Google Scholar 

  26. Y.S. Li, T.S. Zhao, Z.X. Liang, Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J. Power Sources 187, 387 (2009)

    Google Scholar 

  27. A. Brouzgou, A. Podias, P. Tsiakaras, PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J. Appl. Electrochem. 43, 119 (2013)

    Google Scholar 

  28. C. Bianchini et al., Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem. Comm. 11, 1077 (2009)

    Google Scholar 

  29. L. Wang et al., Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells. J. Power Sources 195, 8036 (2010)

    Google Scholar 

  30. M. Simões, S. Baranton, C. Coutanceau, Electrochemical valorisation of glycerol. ChemSusChem 5, 2106 (2012)

    Google Scholar 

  31. A. Marchionni et al., Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. ChemSusChem 6, 518 (2013)

    Google Scholar 

  32. J. Ivy, Summary of electrolytic hydrogen production—milestone completion report, NREL/MP-560-36734 (2004)

    Google Scholar 

  33. S. Marini et al., Advanced alkaline water electrolysis. Electrochim. Acta 82, 384 (2012)

    Article  Google Scholar 

  34. I.M. Kodintsev, S. Trasatti, Electrocatalysis of H2 evolution on RuO2 + IrO2 mixed oxide electrodes. Electrochim. Acta 39, 1803 (1994)

    Article  Google Scholar 

  35. E. Guerrini, S. Trasatti, in Catalysis for Sustainable Energy Production. (Wiley-VCH Verlag GmbH & Co. KGaA, 2009), pp. 235–269

    Google Scholar 

  36. X. Li, F.C. Walsh, D. Pletcher, Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phy. 13, 1162 (2011)

    Google Scholar 

  37. P. Millet, F. Andolfatto, R. Durand, Design and performance of a solid polymer electrolyte water electrolyzer. Int. J Hydrogen Energy 21, 87 (Feb, 1996)

    Google Scholar 

  38. P. Millet, R. Durand, M. Pineri, Preparation of new solid polymer electrolyte composites for water electrolysis. Int. J. Hydrogen Energy 15, 245 (1990)

    Google Scholar 

  39. A. Marshall et al., Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts. Russ J Electrochem 42, 1134 (2006)

    Google Scholar 

  40. A. Marshall, B. Børresen, G. Hagen, M. Tsypkin, R. Tunold, Electrochemical characterisation of IrxSn1—xO2 powders as oxygen evolution electrocatalysts. Electrochim. Acta 51, 3161 (2006)

    Article  Google Scholar 

  41. E. Slavcheva et al., Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52, 3889 (2007)

    Article  Google Scholar 

  42. P. Patil, Y. De Abreu, G.G. Botte, Electrooxidation of coal slurries on different electrode materials. J. Power Sources 158, 368 (2006)

    Google Scholar 

  43. M.S. Seehra, S. Ranganathan, A. Manivannan, Carbon-assisted water electrolysis: an energy-efficient process to produce pure H[sub 2] at room temperature. Appl. Phys. Lett. 90, 044104 (2007)

    Google Scholar 

  44. M. Muthuvel, G. Botte, in Modern Aspects of Electrochemistry, vol. 45, ed. by R.E. White, (Springer, New York, 2009), pp. 207–245

    Google Scholar 

  45. F. Vitse, M. Cooper, G.G. Botte, On the use of ammonia electrolysis for hydrogen production. J. Power Sources 142, 18 (2005)

    Google Scholar 

  46. T. Take, K. Tsurutani, M. Umeda, Hydrogen production by methanol–water solution electrolysis. J. Power Sources 164, 9 (2007)

    Google Scholar 

  47. Z. Hu, M. Wu, Z. Wei, S. Song, P.K. Shen, Pt-WC/C as a cathode electrocatalyst for hydrogen production by methanol electrolysis. J. Power Sources 166, 458 (2007)

    Google Scholar 

  48. V. Bambagioni et al., Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. ChemSusChem 3, 851 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lavacchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lavacchi, A., Miller, H., Vizza, F. (2013). Electrochemical Devices for Energy Conversion and Storage. In: Nanotechnology in Electrocatalysis for Energy. Nanostructure Science and Technology, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8059-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8059-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8058-8

  • Online ISBN: 978-1-4899-8059-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics