Skip to main content

Abstract

In recent years the experimental toolkit at disposal of neuroscientists to investigate electrophysiologically the brain “in vivo” down to the level of neuronal microcircuits circuits and to elucidate their fundamental mechanisms for mapping and processing information has grown rapidly and even beyond expectations [1]. Driven by the compelling need of recording large numbers of neurons within the cortex and deeper structures, in a minimally invasive manner and over long time periods [2–4], the development of implantable brain probes based on microelectromechanical systems (MEMS) with arrays of microelectrodes has experienced a significant boost, leading to substantial optimization of pioneering approaches conceived in the 1970s [5] as well as to the development of novel technologies. Multielectrode arrays (MEAs) and multitransistor arrays (MTAs) integrated in silicon microchips constitute two major representatives from this class of brain implantable probes. Originally developed as “in vitro” prototypes for recording dissociated neurons or brain slices and other excitable cells [5–7], MEA and MTA reflect two different philosophies for transducing a neuronal electrical signal to a semiconductor chip, that is, either through a metal microelectrode or by means of an electrolyte–oxide–semiconductor field-effect transistor (EOSFET), a modified version of the metal–oxide–semiconductor field-effect transistor (MOSFET) that is widely used in integrated circuits [8] (Fig. 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The open-circuit potential (or zero-current potential or rest potential) is the potential measured when a high impedance voltmeter is placed across the cell. This potential is established at equilibrium when a pair of redox forms linked by a given half-reaction (i.e., a redox couple) is present at each electrode [23].

  2. 2.

    The term MTA, literally meant to indicate transistor arrays, in this context is used in a more general sense to indicate arrays of EOSFET and EOSC elements.

References

  1. Buzsáki, G., Anastassiou, C.A., and Koch, C.: The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Article  Google Scholar 

  2. Nicolelis, M.A.L., and Lebedev, M.A.: Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat. Rev. Neurosci. 10(7), 530–540 (2009)

    Article  Google Scholar 

  3. Lebedev, M.A., and Nicolelis, M.A.L.: Toward a whole-body neuroprosthetic. Prog. Brain Res. 194, 47–60 (2011)

    Article  Google Scholar 

  4. Buzsáki, G.: Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)

    Article  Google Scholar 

  5. Pine, J.: A history of MEA development. In: Taketani, M., and Baudry, M. (eds.) Advances in Network Electrophysiology, pp. 3–23. Springer, New York, USA (2006)

    Chapter  Google Scholar 

  6. Fromherz, P.: Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells, and Brain. Wiley-VHC, Weinheim (2003)

    Google Scholar 

  7. Fromherz, P.: Three levels of neuroelectronic interfacing. Ann. N. Y. Acad. Sci. 1093(1), 143–160 (2006)

    Article  Google Scholar 

  8. Nicollian, E.H., and Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley and Sons, New York (2003)

    Google Scholar 

  9. Vassanelli, S., and Fromherz, P.: Transistor probes local potassium conductances in the adhesion region of cultured rat hippocampal neurons. J. Neurosci. 19(16), 6767–6773 (1999)

    Google Scholar 

  10. Kelly, R.C., Smith, M.A., Samonds, J.M., Kohn, A., Bonds, A.B., Movshon, J.A., and Lee, T.S.: Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27(2), 261–264 (2007)

    Article  Google Scholar 

  11. Jog, M.S., Connolly, C.I., Kubota, Y., Iyengar, D.R., Garrido, L., Harlan, R., and Graybiel, A.M.: Tetrode technology: advances in implantable hardware, neuroimaging, and data analysis techniques. J. Neurosci. Methods 117(2), 141–152 (2002)

    Article  Google Scholar 

  12. Felderer, F., and Fromherz, P.: Transistor needle chip for recording in brain tissue. Appl. Phys. 104(1), 1–6 (2011)

    Article  Google Scholar 

  13. Fee, M.S., Mitra, P.P., and Kleinfeld, D.: Variability of extracellular spike waveforms of cortical neurons. J. Neurophysiol. 76(6), 3823–3833 (1996)

    Google Scholar 

  14. Gold, C., et al.: On the origin of the extracellular action potential waveform: a modeling study. J. Neurophysiol. 95(5), 3113–3128 (2006)

    Article  Google Scholar 

  15. Diwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E.: Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PLoS One 6(7), e21928 (2011)

    Article  Google Scholar 

  16. Pettersen, K.H., Lindén, H., Dale, A.M., and Einevoll, G.T.: Extracellular spikes and current-source density. In: Brette, R., and Destexhe, A. (eds.) Handbook of Neural Activity Measurement. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  17. Hanson, T., Fitzsimmons, N., and O’Doherty, J.E.: Technology for multielectrode microstimulation of brain tissue. In: Nicolelis, M.A.L. (ed.) Methods for Neural Ensemble Recordings, 2nd ed. CRC Press, Boca Raton, FL (2008)

    Google Scholar 

  18. O’Doherty, J.E., Lebedev, M.A., Ifft, P.J., Zhuang, K.Z., Shokur, S., Bleuler, H., and Nicolelis, M.A.L.: Active tactile exploration using a brain-machine-brain interface. Nature 479(7372), 228–231 (2011)

    Article  Google Scholar 

  19. Gaylor, J.M., Raman, G., Chung, M., Lee, J., M. Rao, J. Lau, and D. S. Poe, “Cochlear implantation in adults: a systematic review and meta-analysis,” JAMA Otolaryngol.– Head Neck Surg., 139(3), 265–272 (2013)

    Article  Google Scholar 

  20. Wilson, B. S., and Dorman, M. F.: Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 242(1–2), 3–21 (2008)

    Article  Google Scholar 

  21. Chader, G.J., Weiland, J., and Humayun, M.S.: Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. In: Verhaagen, J.M.H., et al. (eds.) Progress in Brain Research, vol. 175, pp. 317–332. Elsevier, Amsterdam (2009)

    Google Scholar 

  22. Schoen, I., and Fromherz, P.: Extracellular stimulation of mammalian neurons through repetitive activation of Na + channels by weak capacitive currents on a silicon chip. J. Neurophysiol. 100(1), 346–357 (2008)

    Article  Google Scholar 

  23. Bard, A.J., and Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2001)

    Google Scholar 

  24. Fromherz, P.: Threshold voltage of the EOSFET: reference electrode and oxide-electrolyte interface. Phys. Status Solidi 209(6), 1157–1162 (2012)

    Article  Google Scholar 

  25. Merrill, D.R., Bikson, M., and Jefferys, J.G.R.: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141(2), 171–198 (2005)

    Article  Google Scholar 

  26. Mayer, S., Geddes, L.A., Bourland, J.D., and Ogborn, L.: Faradic resistance of the electrode/electrolyte interface. Med. Biol. Eng. Comput. 30(5), 538–542 (1992)

    Article  Google Scholar 

  27. Wei, X.F., and Grill, W.M.: Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo. J. Neural Eng. 6(4), 046008 (2009)

    Article  Google Scholar 

  28. Kipke, D.R., Shain, W., Buzsáki, G., Fetz, E., Henderson, J.M., Hetke, J.F., and Schalk, G.: Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008)

    Article  Google Scholar 

  29. Carmena, J.M., Lebedev, M.A., Crist, R.E., O’Doherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., and Nicolelis, M.A.L.: Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1(2), e2 (2003)

    Article  Google Scholar 

  30. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., and Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  31. Lebedev, M.A., and Nicolelis, M.A.L.: Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006)

    Article  Google Scholar 

  32. McCreery, D., Lossinsky, A., Pikov, V., and Liu, X.: Microelectrode array for chronic deep-brain microstimulation and recording. IEEE Trans. Biomed. Eng. 53(4), 726–737 (2006)

    Article  Google Scholar 

  33. Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M., and Einevoll, G.T.: Modeling the spatial reach of the LFP. Neuron 72(5), 859–872 (2011)

    Article  Google Scholar 

  34. Kajikawa, Y., and Schroeder, C.E.: How local is the local field potential? Neuron 72(5), 847–858 (2011)

    Article  Google Scholar 

  35. Lindén, H., Pettersen, K.H., and Einevoll, G.T.: Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J. Comput. Neurosci. 29(3), 423–444 (2010)

    Article  Google Scholar 

  36. Cogan, S.F.: Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10(1), 275–309 (2008)

    Article  Google Scholar 

  37. Moxon, K.A., Hallman, S., Sundarakrishnan, A., Wheatley, M., Nissanov, J., and Barbee, K.A.: Long-term recordings of multiple, single-neurons for clinical applications: the emerging role of the bioactive microelectrode. Materials 2(4), 1762–1794 (2009)

    Article  Google Scholar 

  38. Polikov, V.S., Tresco, P.A., and Reichert, W.M.: Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148(1), 1–18 (2005)

    Article  Google Scholar 

  39. Suner, S., Fellows, M.R., Vargas-Irwin, C., Nakata, G.K., and Donoghue, J.P.: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 13(4), 524–541 (2005)

    Article  Google Scholar 

  40. Hatsopoulos, N.: Decoding continuous and discrete motor behaviors using motor and premotor cortical ensembles. J. Neurophysiol. 92(2), 1165–1174 (2004)

    Article  Google Scholar 

  41. Supèr, H., and Roelfsema, P.R.: Chronic multiunit recordings in behaving animals: advantages and limitations. Prog. Brain Res. 147, 263–282 (2005)

    Article  Google Scholar 

  42. Robblee, L.S., Lefko, J.L. and Brummer, S.B.: Activated Ir: an electrode suitable for reversible charge injection in saline solution. J. Electrochem. Soc. 130(3), 731–733 (1983)

    Article  Google Scholar 

  43. Mozota, J., and Conway, B.E.: Surface and bulk processes at oxidized iridium electrodes—I. Monolayer stage and transition to reversible multilayer oxide film behaviour. Electrochimica Acta. 28(1), 1–8 (1983)

    Article  Google Scholar 

  44. Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O’Rourke, D.K., and Vallabhanath, P.: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain J. Neurol. 119(2), 507–522, 1996

    Article  Google Scholar 

  45. Rose, T.L., Kelliher, E.M., and Robblee, L.S.: Assessment of capacitor electrodes for intracortical neural stimulation. J. Neurosci. Methods 12(3), 181–193 (1985)

    Article  Google Scholar 

  46. Cheung, K.C.: Implantable microscale neural interfaces. Biomed. Microdevices 9(6), 923–938, (2007)

    Article  Google Scholar 

  47. Zhou, D.D., and Greenbaum, E.S.: Implantable neural prostheses 1: devices and applications. Springer, Berlin (2009)

    Google Scholar 

  48. HajjHassan, M., Chodavarapu, V., and Musallam, S.: NeuroMEMS: neural probe microtechnologies. Sensors 8(10), 6704–6726 (2008)

    Article  Google Scholar 

  49. Wise, K.D., Sodagar, A.M., Ying Yao, Gulari, M.N., Perlin, G.E., and Najafi, K.: Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)

    Article  Google Scholar 

  50. Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S., and Lieber, C.M.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012)

    Article  Google Scholar 

  51. Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., and Gross, G.W.: Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008)

    Article  Google Scholar 

  52. Ballerini, L., Prato, M., Giugliano, M., Gambazzi, L., Mazzatenta, A., Businaro, L., Markram, H., and Campidelli, S.: Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J. Neurosci. 27(26), 6931–6936 (2007)

    Article  Google Scholar 

  53. Ciofani, G., Raffa, V., Vittorio, O., Cuschieri, A., Pizzorusso, T., Costa, M., and Bardi, G.: In vitro and in vivo biocompatibility testing of functionalized carbon nanotubes. In: Balasubramanian, K., and Burghard, M. (eds.) Carbon Nanotubes, pp. 67–83. Humana Press, Totowa (2010)

    Chapter  Google Scholar 

  54. Bareket-Keren, L., and Hanein, Y.: Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Front. Neural Circuits 6, 122 (2013)

    Article  Google Scholar 

  55. Ghezzi, D., Antognazza, M.R., Dal Maschio, M., Lanzarini, E., Benfenati, F., and Lanzani, G.: A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011)

    Article  Google Scholar 

  56. Benfenati, V., Toffanin, S., Bonetti, S., Turatti, G. Pistone, A., Chiappalone, M., Sagnella, A., Stefani, A., Generali, G., Ruani, G., Saguatti, D., Zamboni, R., and Muccini, M.: A transparent organic transistor structure for bidirectional stimulation and recording of primary neurons. Nat. Mater. 12(7), 672–680 (2013)

    Article  Google Scholar 

  57. Wise, K.D., Angell, J.B., and Starr, A.: An integrated-circuit approach to extracellular microelectrodes. IEEE Trans. Biomed. Eng. BME-17(3), 238–247 (1970)

    Article  Google Scholar 

  58. Wise, K., and Angell, J.: A microprobe with integrated amplifiers for neurophysiology. In: Solid-State Circuits Conference. Digest of Technical Papers. 1971 IEEE International, vol. XIV, pp. 100–101 (1971)

    Google Scholar 

  59. Wise, K.D., and Angell, J.B.: A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans. Biomed. Eng. BME-22(3), 212–219 (1975)

    Article  Google Scholar 

  60. Drake, K.L., Wise, K.D., Farraye, J., Anderson, D.J., and BeMent, S.L.: Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans. Biomed. Eng. 35(9), 719–732 (1988)

    Article  Google Scholar 

  61. Najafi, K., Wise, K.D., and Mochizuki, T.: A high-yield IC-compatible multichannel recording array. IEEE Trans. Electron Devices 32(7), 1206–1211 (1985)

    Article  Google Scholar 

  62. Wise, K.D., Anderson, D.J., Hetke, J.F., Kipke, D.R., and Najafi, K.: Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 92(1), 76–97 (2004)

    Article  Google Scholar 

  63. Bai, Q., and Wise, K.D.: Single-unit neural recording with active microelectrode arrays. IEEE Trans. Biomed. Eng. 48(8), 911–920 (2001)

    Article  Google Scholar 

  64. Beebe, X., and Rose, T.L.: Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application). IEEE Trans. Biomed. Eng. 35(6), 494–495 (1988)

    Article  Google Scholar 

  65. Weiland, J.D., and Anderson, D.J.: Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans. Biomed. Eng. 47(7), 911–918 (2000)

    Article  Google Scholar 

  66. Weiland, J.D., Anderson, D.J., and Humayun, M.S.: In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes. IEEE Trans. Biomed. Eng. 49(12), 1574–1579 (2002)

    Article  Google Scholar 

  67. Najafi, K., Ji, J., and Wise, K.D.: Scaling limitations of silicon multichannel recording probes. IEEE Trans. Biomed. Eng. 37(1), 1–11 (1990)

    Article  Google Scholar 

  68. Jones, K.E., Campbell, P.K., and Normann, R.A.: A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20(4), 423–437 (1992)

    Article  Google Scholar 

  69. Yoo, J.-M., Negi, S., Tathireddy, P., Solzbacher, F., Song, J.-I., and Rieth, L.W.: Excimer laser deinsulation of Parylene-C on iridium for use in an activated iridium oxide film-coated Utah electrode array. J. Neurosci. Methods 215(1), 78–87 (2013)

    Article  Google Scholar 

  70. Rousche, P.J., and Normann, R.A.: Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J. Neurosci. Methods 82(1), 1–15 (1998)

    Article  Google Scholar 

  71. Rousche, P.J., and Normann, R.A.: Chronic intracortical microstimulation (ICMS) of cat sensory cortex using the Utah Intracortical Electrode Array. IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 7(1), 56–68 (1999)

    Article  Google Scholar 

  72. Badi, A.N., Kertesz, T.R., Gurgel, R.K., Shelton, C., and Normann, R.A.: Development of a novel eighth-nerve intraneural auditory neuroprosthesis. The Laryngoscope 113(5), 833–842 (2003)

    Article  Google Scholar 

  73. Clark, G.A., Ledbetter, N.M., Warren, D.J., and Harrison, R.R.: Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays. Paper presented at 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 4641–4644, 30 August–3 September 2011

    Google Scholar 

  74. Rousche, P.J., and Normann, R.A.: A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20(4), 413–422 (1992)

    Article  Google Scholar 

  75. Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem. 88(1), 1–20 (2003)

    Article  Google Scholar 

  76. Bergveld, P.: Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19(5), 342–351 (1972)

    Article  Google Scholar 

  77. Fromherz, P., Offenhausser, A., Vetter, T., and Weis, J.: A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252(5010), 1290–1293 (1991)

    Article  Google Scholar 

  78. Vassanelli, S., and Fromherz, P.: Transistor records of excitable neurons from rat brain. Appl. Phys. 66(4), 459–463 (1998)

    Article  Google Scholar 

  79. Voelker, M., and Fromherz, P.: Signal transmission from individual mammalian nerve cell to field-effect transistor. Small 1(2), 206–210 (2005)

    Article  Google Scholar 

  80. Besl, B., and Fromherz, P.: Transistor array with an organotypic brain slice: field potential records and synaptic currents. Eur. J. Neurosci. 15(6), 999–1005 (2002)

    Article  Google Scholar 

  81. Hutzler, M., and Fromherz, P.: Silicon chip with capacitors and transistors for interfacing organotypic brain slice of rat hippocampus. Eur. J. Neurosci. 19(8), 2231–2238 (2004)

    Article  Google Scholar 

  82. Hutzler, M.: High-resolution multitransistor array recording of electrical field potentials in cultured brain slices. J. Neurophysiol. 96(3), 1638–1645 (2006)

    Article  Google Scholar 

  83. Schoen, I., and Fromherz, P.: The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor. Biophys. J. 92(3), 1096–1111 (2007)

    Article  Google Scholar 

  84. Vassanelli, S., Mahmud, M., Girardi, S., and Maschietto, M.: On the way to large-scale and high-resolution brain-chip interfacing. Cogn. Comput. 4(1), 71–81 (2012)

    Article  Google Scholar 

  85. Wallrapp, F., and Fromherz, P.: TiO[sub 2] and HfO[sub 2] in electrolyte-oxide-silicon configuration for applications in bioelectronics. J. Appl. Phys. 99(11), 114103 (2006)

    Article  Google Scholar 

  86. Giacomello, M., Girardi, S., Scorzeto, M., Peruffo, A., Maschietto, M., Cozzi, B., and Vassanelli, S.: Stimulation of Ca2+ signals in neurons by electrically coupled electrolyte-oxide-semiconductor capacitors. J. Neurosci. Methods 198(1), 1–7 (2011)

    Article  Google Scholar 

  87. Eversmann, B., Jenkner, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., Fromherz, P., Merz, M., Brenner, M., Schreiter, M., Gabl, R., Plehnert, K., Steinhauser, M., Eckstein, G., Schmitt-Landsiedel, D., and Thewes, R.: A 128 x 128 cmos biosensor array for extracellular recording of neural activity. IEEE J. Solid-State Circuits, 38(12), 2306–2317 (2003)

    Article  Google Scholar 

  88. Lambacher, A., Vitzthum, V., Zeitler, R., Eickenscheidt, M., Eversmann, B., Thewes, R., and Fromherz, P.: Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA). Appl. Phys. 102(1), 1–11 (2011)

    Article  Google Scholar 

  89. Eversmann, B., Lambacher, A., Gerling, T. Kunze, A., Fromherz, P., and Thewes, R.: A neural tissue interfacing chip for in-vitro applications with 32k recording / stimulation channels on an active area of 2.6 mm2. In ESSCIRC (ESSCIRC), 2011 Proceedings of the 41, 211–214 (2011)

    Google Scholar 

  90. Ferrea, E., Maccione, A., Medrihan, L., Nieus, T., Ghezzi, D., Baldelli, P., Benfenati, F., and Berdondini, L.: Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front. Neural Circuits 6, 80 (2012). doi: 10.3389/fncir.2012.00080

    Article  Google Scholar 

  91. Frey, U., Sedivy, J., Heer, F., Pedron, R., Ballini, M., Mueller, J., Bakkum, D., Hafizovic, S., Faraci, F. D., Greve, F., Kirstein, K.-U., and Hierlemann, A.: Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45(2), 467–482 (2010)

    Article  Google Scholar 

  92. Felderer, F., and Fromherz, P.: Transistor needle chip for recording in brain tissue. Appl. Phys. 104(1), 1–6 (2011)

    Article  Google Scholar 

  93. Weis, R., and Fromherz, P.: Frequency dependent signal transfer in neuron transistors. Phys. Rev. E 55(1), 877 (1997)

    Article  Google Scholar 

  94. Liu, J., Xie, C., Dai, X., Jin, L., Zhou, W., and Lieber, C.M.: Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. 110(17), 6694–6699 (2013)

    Article  Google Scholar 

  95. Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F., Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49(12), 2114–2138 (2010)

    Article  Google Scholar 

  96. Seymour, J.P.: Advanced Polymer-based Microfabricated Neural Probes Using Biologically Driven Designs. Dissertation, University of Michigan (2009).

    Google Scholar 

  97. Kozai, T.D.Y., Langhals, N.B., Patel, P.R., Deng, X., Zhang, H., Smith, K. L., Lahann, J., Kotov, N.A., and Kipke, D.R.: Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11(12), 1065-1073 (2012)

    Article  Google Scholar 

  98. Brenner, A., Stein R.B., and Normann, R.A.: Selective stimulation of cat sciatic nerve using an array of varying length microelectrodes. Journal of Neurophysiology 85, 1585–1594 (2001)

    Google Scholar 

  99. Bhandari, R., Negi, S., Rieth, L., Normann, R.A., and Solzbacher, F.: A novel masking method for high aspect ratio penetrating microelectrode arrays. J. Micromech. Microeng. 19, 035004 (8pp) (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vassanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vassanelli, S. (2014). Multielectrode and Multitransistor Arrays for In Vivo Recording. In: De Vittorio, M., Martiradonna, L., Assad, J. (eds) Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8038-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8038-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8037-3

  • Online ISBN: 978-1-4899-8038-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics