Skip to main content

Optimal Measures of Small Fiber Neuropathy in Diabetic Polyneuropathy

  • Chapter
  • First Online:
Studies in Diabetes

Abstract

Small fibers constitute the majority of peripheral nerve fibers and are responsible for the symptoms of painful diabetic neuropathy and are also key to the genesis of foot ulceration via reduced heat and pain perception, sudomotor dysfunction, and blunted pressure-induced vasodilation. Small fiber damage may also precede large fiber damage in subjects with impaired glucose tolerance (IGT) and early diabetic neuropathy. A number of functional tests such as thermal thresholds, quantitative sudomotor axon reflex testing (QSART), and the sympathetic skin response as well as the neuropad and the nerve axon reflex can be used to assess small fiber dysfunction. More recently skin biopsy has been advocated to provide a sensitive means to identify early small fiber damage, although the technique is invasive, requiring a skin biopsy. As an alternative corneal confocal microscopy, an ophthalmic technique represents a noninvasive means to quantify small fiber damage and is increasingly being deployed for the assessment of diabetic and other peripheral neuropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tesfaye S, Boulton AJ, Dyck PJ et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293

    Article  PubMed  Google Scholar 

  2. Dyck PJ, Overland CJ, Low PA et al (2010) Signs and symptoms versus nerve conduction studies to diagnose diabetic sensorimotor polyneuropathy: Cl vs. NPhys trial. Muscle Nerve 42:157–164

    Article  PubMed  Google Scholar 

  3. Dyck PJ, Norell JE, Tritschler H et al (2007) Challenges in design of multicenter trials: end points assessed longitudinally for change and monotonicity. Diabetes Care 30:2619–2625

    Article  PubMed  Google Scholar 

  4. Perkins BA, Dholasania A, Buchanan RA, Bril V (2010) Short-term metabolic change is associated with improvement in measures of diabetic neuropathy: a 1-year placebo cohort analysis. Diabet Med 27:1271–1279

    Article  CAS  PubMed  Google Scholar 

  5. Gibbons CH, Freeman R, Veves A (2010) Diabetic neuropathy: a cross-sectional study of the relationships among tests of neurophysiology. Diabetes Care 33:2629–2634

    Article  PubMed  Google Scholar 

  6. Said G, Baudoin D, Toyooka K (2008) Sensory loss, pains, motor deficit and axonal regeneration in length-dependent diabetic polyneuropathy. J Neurol 255:1693–1702

    Article  CAS  PubMed  Google Scholar 

  7. Malik RA, Tesfaye S, Newrick PG et al (2005) Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 48:578–585

    Article  CAS  PubMed  Google Scholar 

  8. Gibbons CH, Illigens BM, Wang N, Freeman R (2010) Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve 42:112–119

    Article  PubMed Central  PubMed  Google Scholar 

  9. Koitka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL (2004) Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes 53:721–725

    Article  CAS  PubMed  Google Scholar 

  10. Fromy B, Sigaudo-Roussel D, Gaubert-Dahan ML et al (2010) Aging-associated sensory neuropathy alters pressure-induced vasodilation in humans. J Invest Dermatol 130:849–855

    Article  CAS  PubMed  Google Scholar 

  11. Kuhtz-Buschbeck JP, Andresen W, Gobel S, Gilster R, Stick C (2010) Thermoreception and nociception of the skin: a classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise. Adv Physiol Educ 34:25–34

    Article  PubMed  Google Scholar 

  12. Umapathi T, Tan WL, Loke SC, Soon PC, Tavintharan S, Chan YH (2007) Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve 35:591–598

    Article  CAS  PubMed  Google Scholar 

  13. Quattrini C, Tavakoli M, Jeziorska M et al (2007) Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes 56:2148–2154

    Article  CAS  PubMed  Google Scholar 

  14. Loseth S, Stalberg E, Jorde R, Mellgren SI (2008) Early diabetic neuropathy: thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J Neurol 255:1197–1202

    Article  PubMed  Google Scholar 

  15. Chao CC, Hsieh SC, Yang WS et al (2007) Glycemic control is related to the severity of impaired thermal sensations in type 2 diabetes. Diabetes Metab Res Rev 23:612–620

    Article  CAS  PubMed  Google Scholar 

  16. Sorensen L, Molyneaux L, Yue DK (2006) The level of small nerve fiber dysfunction does not predict pain in diabetic neuropathy: a study using quantitative sensory testing. Clin J Pain 22:261–265

    Article  PubMed  Google Scholar 

  17. Mueller D, Obermann M, Koeppen S et al (2010) Electrically evoked nociceptive potentials for early detection of diabetic small-fiber neuropathy. Eur J Neurol 17:834–841

    Article  CAS  PubMed  Google Scholar 

  18. Veves A, Akbari CM, Primavera J et al (1998) Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy, vascular disease, and foot ulceration. Diabetes 47:457–463

    Article  CAS  PubMed  Google Scholar 

  19. Caselli A, Spallone V, Marfia GA et al (2006) Validation of the nerve axon reflex for the assessment of small nerve fibre dysfunction. J Neurol Neurosurg Psychiatry 77:927–932

    Article  CAS  PubMed  Google Scholar 

  20. Green AQ, Krishnan ST, Rayman G (2009) C-fiber function assessed by the laser doppler imager flare technique and acetylcholine iontophoresis. Muscle Nerve 40:985–991

    Article  PubMed  Google Scholar 

  21. Green AQ, Krishnan S, Finucane FM, Rayman G (2010) Altered C-fiber function as an indicator of early peripheral neuropathy in individuals with impaired glucose tolerance. Diabetes Care 33:174–176

    Article  CAS  PubMed  Google Scholar 

  22. Krishnan ST, Rayman G (2004) The LDIflare: a novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care 27:2930–2935

    Article  PubMed  Google Scholar 

  23. Krishnan ST, Quattrini C, Jeziorska M, Malik RA, Rayman G (2009) Abnormal LDIflare but normal quantitative sensory testing and dermal nerve fiber density in patients with painful diabetic neuropathy. Diabetes Care 32:451–455

    Article  PubMed  Google Scholar 

  24. Lauria G, Devigili G (2007) Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat Clin Pract Neurol 3:546–557

    Article  PubMed  Google Scholar 

  25. Lauria G, Lombardi R, Camozzi F, Devigili G (2009) Skin biopsy for the diagnosis of peripheral neuropathy. Histopathology 54:273–285

    Article  CAS  PubMed  Google Scholar 

  26. Smith AG, Howard JR, Kroll R et al (2005) The reliability of skin biopsy with measurement of intraepidermal nerve fiber density. J Neurol Sci 228:65–69

    Article  PubMed  Google Scholar 

  27. Bakkers M, Merkies IS, Lauria G et al (2009) Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology 73:1142–1148

    Article  CAS  PubMed  Google Scholar 

  28. Lauria G, Bakkers M, Schmitz C et al (2010) Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 15:202–207

    Article  PubMed  Google Scholar 

  29. Panoutsopoulou IG, Wendelschafer-Crabb G, Hodges JS, Kennedy WR (2009) Skin blister and skin biopsy to quantify epidermal nerves: a comparative study. Neurology 72:1205–1210

    Article  PubMed  Google Scholar 

  30. Vlckova-Moravcova E, Bednarik J, Dusek L, Toyka KV, Sommer C (2008) Diagnostic validity of epidermal nerve fiber densities in painful sensory neuropathies. Muscle Nerve 37:50–60

    Article  PubMed  Google Scholar 

  31. Devigili G, Tugnoli V, Penza P et al (2008) The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain 131:1912–1925

    Article  PubMed  Google Scholar 

  32. Nebuchennykh M, Loseth S, Lindal S, Mellgren SI (2009) The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy. J Neurol 256:1067–1075

    Article  PubMed  Google Scholar 

  33. Pittenger GL, Mehrabyan A, Simmons K et al (2005) Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord 3:113–121

    Article  CAS  PubMed  Google Scholar 

  34. Vlckova-Moravcova E, Bednarik J, Belobradkova J, Sommer C (2008) Small-fibre involvement in diabetic patients with neuropathic foot pain. Diabet Med 25:692–699

    Article  CAS  PubMed  Google Scholar 

  35. Shun CT, Chang YC, Wu HP et al (2004) Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 127:1593–1605

    Article  PubMed  Google Scholar 

  36. Holland NR, Stocks A, Hauer P, Cornblath DR, Griffin JW, McArthur JC (1997) Intraepidermal nerve fiber density in patients with painful sensory neuropathy. Neurology 48:708–711

    Article  CAS  PubMed  Google Scholar 

  37. Periquet MI, Novak V, Collins MP et al (1999) Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology 53:1641–1647

    Article  CAS  PubMed  Google Scholar 

  38. Zhou L, Kitch DW, Evans SR et al (2007) Correlates of epidermal nerve fiber densities in HIV-associated distal sensory polyneuropathy. Neurology 68:2113–2119

    Article  CAS  PubMed  Google Scholar 

  39. Loseth S, Mellgren SI, Jorde R, Lindal S, Stalberg E (2010) Polyneuropathy in type 1 and type 2 diabetes: comparison of nerve conduction studies, thermal perception thresholds and intraepidermal nerve fibre densities. Diabetes Metab Res Rev 26:100–106

    Article  PubMed  Google Scholar 

  40. England JD, Gronseth GS, Franklin G et al (2009) Practice parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 72:177–184

    Article  CAS  PubMed  Google Scholar 

  41. Lauria G, Hsieh ST, Johansson O et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17:903–912, e944–909

    Article  CAS  PubMed  Google Scholar 

  42. Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI (2004) Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care 27:1974–1979

    Article  PubMed  Google Scholar 

  43. Gibbons CH, Griffin JW, Polydefkis M et al (2006) The utility of skin biopsy for prediction of progression in suspected small fiber neuropathy. Neurology 66:256–258

    Article  CAS  PubMed  Google Scholar 

  44. Ebenezer GJ, Hauer P, Gibbons C, McArthur JC, Polydefkis M (2007) Assessment of epidermal nerve fibers: a new diagnostic and predictive tool for peripheral neuropathies. J Neuropathol Exp Neurol 66:1059–1073

    Article  PubMed  Google Scholar 

  45. Lauria G, Morbin M, Lombardi R et al (2003) Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology 61:631–636

    Article  CAS  PubMed  Google Scholar 

  46. Wendelschafer-Crabb G, Kennedy WR, Walk D (2006) Morphological features of nerves in skin biopsies. J Neurol Sci 242:15–21

    Article  CAS  PubMed  Google Scholar 

  47. Brannagan TH 3rd, Hays AP, Chin SS et al (2005) Small-fiber neuropathy/neuronopathy associated with celiac disease: skin biopsy findings. Arch Neurol 62:1574–1578

    Article  PubMed  Google Scholar 

  48. Chai J, Herrmann DN, Stanton M, Barbano RL, Logigian EL (2005) Painful small-fiber neuropathy in Sjogren syndrome. Neurology 65:925–927

    Article  CAS  PubMed  Google Scholar 

  49. De Sousa EA, Hays AP, Chin RL, Sander HW, Brannagan TH 3rd (2006) Characteristics of patients with sensory neuropathy diagnosed with abnormal small nerve fibres on skin biopsy. J Neurol Neurosurg Psychiatry 77:983–985

    Article  PubMed  Google Scholar 

  50. Herrmann DN, McDermott MP, Henderson D, Chen L, Akowuah K, Schifitto G (2004) Epidermal nerve fiber density, axonal swellings and QST as predictors of HIV distal sensory neuropathy. Muscle Nerve 29:420–427

    Article  PubMed  Google Scholar 

  51. Quattrini C, Jeziorska M, Boulton AJ, Malik RA (2008) Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care 31:140–145

    Article  PubMed  Google Scholar 

  52. Sorensen L, Molyneaux L, Yue DK (2006) The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care 29:883–887

    Article  PubMed  Google Scholar 

  53. Smith AG, Russell J, Feldman EL et al (2006) Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care 29:1294–1299

    Article  PubMed  Google Scholar 

  54. Boucek P, Havrdova T, Voska L et al (2008) Epidermal innervation in type 1 diabetic patients: a 2.5-year prospective study after simultaneous pancreas/kidney transplantation. Diabetes Care 31:1611–1612

    Article  PubMed  Google Scholar 

  55. Boucek P, Havrdova T, Voska L et al (2005) Severe depletion of intraepidermal nerve fibers in skin biopsies of pancreas transplant recipients. Transplant Proc 37:3574–3575

    Article  CAS  PubMed  Google Scholar 

  56. Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC (2004) The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 127:1606–1615

    Article  PubMed  Google Scholar 

  57. Beiswenger KK, Calcutt NA, Mizisin AP (2008) Epidermal nerve fiber quantification in the assessment of diabetic neuropathy. Acta Histochem 110:351–362

    Article  PubMed Central  PubMed  Google Scholar 

  58. Rao MS, Jaszczak E, Landis SC (1994) Innervation of footpads of normal and mutant mice lacking sweat glands. J Comp Neurol 346:613–625

    Article  CAS  PubMed  Google Scholar 

  59. Navarro X, Verdu E, Wendelscafer-Crabb G, Kennedy WR (1995) Innervation of cutaneous structures in the mouse hind paw: a confocal microscopy immunohistochemical study. J Neurosci Res 41:111–120

    Article  CAS  PubMed  Google Scholar 

  60. Hsieh ST, Chiang HY, Lin WM (2000) Pathology of nerve terminal degeneration in the skin. J Neuropathol Exp Neurol 59:297–307

    CAS  PubMed  Google Scholar 

  61. Christianson JA, Riekhof JT, Wright DE (2003) Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Exp Neurol 179:188–199

    Article  CAS  PubMed  Google Scholar 

  62. Lauria G, Lombardi R, Borgna M et al (2005) Intraepidermal nerve fiber density in rat foot pad: neuropathologic-neurophysiologic correlation. J Peripher Nerv Syst 10:202–208

    Article  PubMed  Google Scholar 

  63. Pare M, Albrecht PJ, Noto CJ et al (2007) Differential hypertrophy and atrophy among all types of cutaneous innervation in the glabrous skin of the monkey hand during aging and naturally occurring type 2 diabetes. J Comp Neurol 501:543–567

    Article  PubMed  Google Scholar 

  64. Johnson MS, Ryals JM, Wright DE (2008) Early loss of peptidergic intraepidermal nerve fibers in an STZ-induced mouse model of insensate diabetic neuropathy. Pain 140:35–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Wright DE, Johnson MS, Arnett MG, Smittkamp SE, Ryals JM (2007) Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/db) mice. J Peripher Nerv Syst 12:250–261

    Article  PubMed  Google Scholar 

  66. Russell JW, Karnes JL, Dyck PJ (1996) Sural nerve myelinated fiber density differences associated with meaningful changes in clinical and electrophysiologic measurements. J Neurol Sci 135:114–117

    Article  CAS  PubMed  Google Scholar 

  67. Bril V, Perkins BA (2002) Validation of the Toronto clinical scoring system for diabetic polyneuropathy. Diabetes Care 25:2048–2052

    Article  PubMed  Google Scholar 

  68. Thrainsdottir S, Malik RA, Rosen I et al (2009) Sural nerve biopsy may predict future nerve dysfunction. Acta Neurol Scand 120:38–46

    Article  CAS  PubMed  Google Scholar 

  69. Bevilacqua NJ, Rogers LC, Malik RA, Armstrong DG (2007) Technique of the sural nerve biopsy. J Foot Ankle Surg 46:139–142

    Article  PubMed  Google Scholar 

  70. Hossain P, Sachdev A, Malik RA (2005) Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet 366:1340–1343

    Article  PubMed  Google Scholar 

  71. Tavakoli M, Marshall A, Pitceathly R et al (2009) Corneal confocal microscopy: A novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol 223(1):245–250

    Article  PubMed Central  PubMed  Google Scholar 

  72. Tavakoli M, Marshall A, Thompson L et al (2009) Corneal confocal microscopy: a novel noninvasive means to diagnose neuropathy in patients with Fabry disease. Muscle Nerve 40:976–984

    Article  PubMed  Google Scholar 

  73. Kim HC, Cho YJ, Ahn CW et al (2009) Nerve growth factor and expression of its receptors in patients with diabetic neuropathy. Diabet Med 26:1228–1234

    Article  CAS  PubMed  Google Scholar 

  74. Messmer EM, Schmid-Tannwald C, Zapp D, Kampik A (2010) In vivo confocal microscopy of corneal small fiber damage in diabetes mellitus. Graefes Arch Clin Exp Ophthalmol 248:1307–1312

    Article  PubMed  Google Scholar 

  75. Mehra S, Tavakoli M, Kallinikos PA et al (2007) Corneal confocal microscopy detects early nerve regeneration after pancreas transplantation in patients with type 1 diabetes. Diabetes Care 30:2608–2612

    Article  PubMed  Google Scholar 

  76. Efron N, Edwards K, Roper N et al (2010) Repeatability of measuring corneal subbasal nerve fiber length in individuals with type 2 diabetes. Eye Contact Lens 36:245–248

    Article  PubMed  Google Scholar 

  77. Tavakoli M, Quattrini C, Abbott C et al (2010) Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 33:1792–1797

    Article  PubMed  Google Scholar 

  78. Dabbah MA, Graham J, Petropoulos I, Tavakoli M, Malik RA (2010) Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. Med Image Comput Comput Assist Interv 13:300–307

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Pritchard N, Edwards K, Vagenas D et al (2010) Corneal sensitivity as an ophthalmic marker of diabetic neuropathy. Optom Vis Sci 87:1003–1008

    Article  PubMed  Google Scholar 

  80. Rosenberg ME, Tervo TM, Immonen IJ, Muller LJ, Gronhagen-Riska C, Vesaluoma MH (2000) Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci 41:2915–2921

    CAS  PubMed  Google Scholar 

  81. Tavakoli M, Kallinikos PA, Efron N, Boulton AJ, Malik RA (2007) Corneal sensitivity is reduced and relates to the severity of neuropathy in patients with diabetes. Diabetes Care 30:1895–1897

    Article  PubMed  Google Scholar 

  82. Bril V, Nyunt M, Ngo M (2000) Limits of the sympathetic skin response in patients with diabetic polyneuropathy. Muscle Nerve 23:1427–1430

    Article  CAS  PubMed  Google Scholar 

  83. Tentolouris N, Marinou K, Kokotis P, Karanti A, Diakoumopoulou E, Katsilambros N (2009) Sudomotor dysfunction is associated with foot ulceration in diabetes. Diabet Med 26:302–305

    Article  CAS  PubMed  Google Scholar 

  84. Al-Moallem MA, Zaidan RM, Alkali NH (2008) The sympathetic skin response in diabetic neuropathy and its relationship to autonomic symptoms. Saudi Med J 29:568–572

    PubMed  Google Scholar 

  85. Sletten DM, Kimpinski K, Weigand SD, Low PA (2010) Comparison of a gel versus solution-based vehicle for the delivery of acetylcholine in QSART. Auton Neurosci 158:123–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Low VA, Sandroni P, Fealey RD, Low PA (2006) Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve 34:57–61

    Article  PubMed  Google Scholar 

  87. Shimada H, Kihara M, Kosaka S et al (2001) Comparison of SSR and QSART in early diabetic neuropathy–the value of length-dependent pattern in QSART. Auton Neurosci 92:72–75

    Article  CAS  PubMed  Google Scholar 

  88. Quattrini C, Jeziorska M, Tavakoli M, Begum P, Boulton AJ, Malik RA (2008) The Neuropad test: a visual indicator test for human diabetic neuropathy. Diabetologia 51:1046–1050

    Article  CAS  PubMed  Google Scholar 

  89. Spallone V, Morganti R, Siampli M et al (2009) Neuropad as a diagnostic tool for diabetic autonomic and sensorimotor neuropathy. Diabet Med 26:686–692

    Article  CAS  PubMed  Google Scholar 

  90. Papanas N, Papatheodorou K, Papazoglou D, Kotsiou S, Maltezos EA (2010) Prospective study on the use of the indicator test neuropad® for the early diagnosis of peripheral neuropathy in type 2 diabetes. Exp Clin Endocrinol Diabetes 119(2):122–125

    Article  PubMed  Google Scholar 

  91. Gibbons CH, Illigens BM, Wang N, Freeman R (2009) Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology 72:1479–1486

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tavakoli, M., Fadavi, H., Malik, R.A. (2014). Optimal Measures of Small Fiber Neuropathy in Diabetic Polyneuropathy. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_6

Download citation

Publish with us

Policies and ethics