Skip to main content

The Diagnostic Pathology of the Nuclear Envelope in Human Cancers

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

Cancer is still diagnosed on the basis of altered tissue and cellular morphology. The criteria that pathologists use for diagnosis include many morphologically distinctive alterations in the nuclear envelope (NE). With the expectation that diagnostic NE changes will have biological relevance to cancer, a classification of the various types of NE structural changes into three groups is proposed. The first group predicts chromosomal instability. The changes in this group include pleomorphism of lamina size and shape, as if constraints to maintain a spherical shape were lost. Also characteristic of chromosomal instability are the presence of micronuclei, a specific structural feature likely related to the newly described physiology of chromothripsis. The second group is predicted to be functionally important during clonal evolution, because the NE changes in this group are conserved during the clonal evolution of genetically unstable tumors. Two examples of this group include increased ratio of nuclear volume to cytoplasmic volume and the relatively fragile nuclei of small-cell carcinomas. The third and most interesting group develops in a near-diploid, genetically stable background. Many of these (perhaps ultimately all) are directly related to the activation of particular oncogenes. The changes in this group so far include long inward folds of the NE and spherical invaginations of cytoplasm projecting partially into the nucleus (“intranuclear cytoplasmic inclusions”). This group is exemplified by papillary thyroid carcinoma in which RET and TRK tyrosine kinases, and probably B-Raf mutations, directly lead to diagnostic longitudinal folds of the lamina (“nuclear grooves”) and intranuclear cytoplasmic inclusions. B-Raf activation may also be linked to intranuclear cytoplasmic inclusions in melanoma and to nuclear grooves in Langerhans cell histiocytosis. Nuclear grooves in granulosa cell tumor may be related to mutations in the FOXL2 oncogene. Uncovering the precise mechanistic basis for any of these lamina alterations would provide a valuable objective means for improving diagnosis, and will likely reflect new types of functional changes, relevant to particular forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

H&E:

Hematoxylin and eosin

N:C ratio:

Nuclear volume compared to cytoplasmic volume ratio

NE:

Nuclear envelope

PTC:

Papillary thyroid carcinoma

References

  1. Chow K, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209

    PubMed  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  4. Fischer AH, Young KA, DeLellis RA (2004) Incorporating the criteria of malignancy into the evolutionary framework for cancer. J Cell Biochem 93:28–36

    Article  PubMed  CAS  Google Scholar 

  5. Ghadially FN (1985) Diagnostic electron microscopy of tumours, 2nd edn. Butterworths, London

    Google Scholar 

  6. Sutherland KD, Berns A (2010) Cell of origin of lung cancer. Mol Oncol 4(5):397–403

    Article  PubMed  Google Scholar 

  7. Nikiforov YE, Nikiforova MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7(10):569–580

    Article  PubMed  CAS  Google Scholar 

  8. Tallini G (2002) Molecular pathobiology of thyroid neoplasms. Endocr Pathol 13(4):271–288

    PubMed  CAS  Google Scholar 

  9. Novara G, Martignoni G, Artibani W, Ficarra V (2007) Grading systems in renal cell carcinoma. J Urol 177(2):430–436

    PubMed  Google Scholar 

  10. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410 [Reprint in Histopathology. 2002: 41(3A):154–161; PMID: 12405947]

    Article  PubMed  CAS  Google Scholar 

  11. Davey DD, Banks ER, Jennings D, Powell DE (1993) Comparison of nuclear grade and DNA cytometry in breast carcinoma aspirates to histologic grade in excised cancers. Am J Clin Pathol 99(6):708–713

    PubMed  CAS  Google Scholar 

  12. Bozzetti C, Nizzoli R, Naldi N, Guazzi A, Camisa R, Manotti L, Pilato FP, Mazzini G, Cocconi G (1996) Nuclear grading and flow cytometric DNA pattern in fine-needle aspirates of primary breast cancer. Diagn Cytopathol 15(2):116–120

    Article  PubMed  CAS  Google Scholar 

  13. Dey P (2010) Cancer nucleus: morphology and beyond. Diagn Cytopathol 38:382–390

    PubMed  Google Scholar 

  14. Bignold LP (ed) (2006) Cancer: cell structures, carcinogens and genomic instability. Birkhauser Verlag, Basel

    Google Scholar 

  15. Fischer AH, Zhao C, Li QK, Gustafson KS, Eltoum IE, Tambouret R, Benstein B, Savaloja LC, Kulesza P (2010) The cytologic criteria of malignancy. J Cell Biochem 110:795–811

    Article  PubMed  CAS  Google Scholar 

  16. Holland AJ, Cleveland DW (2012) Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep 13(6):501–514

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Voeller BR (1968) The chromosomal theory of inheritance: classic papers in development and heredity. Appleton-Centry-Crofts, New York

    Google Scholar 

  18. Hansemann D (1890) Ueber asymmetrische Zelltheilung in epithelkrebsen und deren biologische bedeutung. Arch Pathol Anat Physiol Klin Medicin 119:299–326

    Article  Google Scholar 

  19. Boveri T (2007) Concerning the origin of malignant tumors (trans: Harris H). The Company of Biologists Limited and Cold Spring Harbor Laboratory Press (copublishers), New York

    Google Scholar 

  20. Shimizu N (2011) Molecular mechanisms of the origin of micronuclei from extrachromosomal elements. Mutagenesis 26:119. doi:10.1093/mutage/geq053

    Article  PubMed  CAS  Google Scholar 

  21. Samanta S, Dey P (2012) Micronucleus and its applications. Diagn Cytopathol 40(1):84–90

    Article  PubMed  Google Scholar 

  22. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482(7383):53–58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Kronenwett U, Huwendiek S, Castro J, Ried T, Auer G (2004) Characterisation of breast fine-needle aspiration biopsies by centrosome aberrations and genomic instability. Br J Cancer 92(2):389–395

    Article  PubMed Central  Google Scholar 

  24. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C (2012) Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep 13(6):528–538

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Davoli T, de Lange T (2011) The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27:585. doi:10.1146/annurev-cellbio-092910-154234

    Article  PubMed  CAS  Google Scholar 

  26. Bubendorf L, Grilli B, Sauter G, Mihatsch MJ, Gasser TC, Dalquen P (2001) Multiprobe FISH for enhanced detection of bladder cancer in voided urine specimens and bladder washings. Am J Clin Pathol 116(1):79–86

    Article  PubMed  CAS  Google Scholar 

  27. Sinicrope FA, Rego RL, Halling KC, Foster N, Sargent DJ, La Plant B, French AJ, Laurie JA, Goldberg RM, Thibodeau SN, Witzig TE (2006) Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 131(3):729–737

    Article  PubMed  CAS  Google Scholar 

  28. Shia J, Black D, Hummer AJ, Boyd J, Soslow RA (2008) Routinely assessed morphological features correlate with microsatellite instability status in endometrial cancer. Hum Pathol 39(1):116–125

    Article  PubMed  CAS  Google Scholar 

  29. Vargas JD, Hatch EM, Anderson DJ, Hetzer MW (2012) Transient nuclear envelope rupturing during interphase in human cancer cells. Nucleus 3(1):88–100

    Article  PubMed Central  PubMed  Google Scholar 

  30. Fischer AH, Bardarov S, Jiang Z (2004) Molecular aspects of diagnostic nucleolar and nuclear envelope changes in prostate cancer. J Cell Biochem 91:170–184

    Article  PubMed  CAS  Google Scholar 

  31. Sanchez JA, Wangh LJ (1999) New insights into the mechanisms of nuclear segmentation in human neutrophils. J Cell Biochem 73(1):1–10

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmann K, Dreger CK, Olins AL, Olins DE, Shultz LD, Lucke B, Karl H, Kaps R, Muller D, Vaya A, Aznar J, Ware RE, Cruz NS, Lindner TH, Herrmann H, Reis A, Sperling K (2002) Mutations in the gene encoding the lamin B receptor produce an altered nuclear morphology in granulocytes (Pelger-Huet anomaly). Nat Genet 31(4):410–414

    PubMed  CAS  Google Scholar 

  33. Gaines P, Tien CW, Olins AL, Olins DE, Shultz LD, Carney L, Berliner N (2008) Mouse neutrophils lacking lamin B-receptor expression exhibit aberrant development and lack critical functional responses. Exp Hematol 36(8):965–976

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Cibas ES, Ducatman BS (2009) Cytology: diagnostic principles and clinical correlates. Saunders Elsevier, Philadelphia

    Google Scholar 

  35. DeMay RM (1996) The art and science of cytopathology, 1st edn. American Society of Clinical Pathologists Press, Chicago

    Google Scholar 

  36. Frost JK (1986) The cell in health and disease: an evaluation of cellular morphologic expression of biologic behavior, 2nd edn. Karger, New York, Revised edition

    Google Scholar 

  37. Edens LJ, White KH, Jevtic P, Li X, Levy DL (2012) Nuclear size regulation: from single cells to development and disease. Trends Cell Biol 23(4):151–159

    Article  PubMed  Google Scholar 

  38. Levy DL, Heald R (2012) Mechanisms of intracellular scaling. Annu Rev Cell Dev Biol 28:113–135

    Article  PubMed  CAS  Google Scholar 

  39. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122(10):1477–1486. doi:10.1242/jcs.037333

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Fujimoto S, Ito M, Matsunaga S, Fukui K, Fujimoto S, Ito M, Matsunaga S, Fukui K (2005) An upper limit of the ratio of DNA volume to nuclear volume exists in plants. Genes Genet Syst 80(5):345–350

    Article  PubMed  CAS  Google Scholar 

  41. Neumann FR, Nurse P (2007) Nuclear size control in fission yeast. J Cell Biol 179(4):593–600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Huber MD, Gerace L, Huber MD, Gerace L (2007) The size-wise nucleus: nuclear volume control in eukaryotes. J Cell Biol 179(4):583–584

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Wistuba II, Gazdar AF, Minna JD (2001) Molecular genetics of small cell lung carcinoma. Semin Oncol 28(2 Suppl 4):3–13

    Article  PubMed  CAS  Google Scholar 

  44. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordonez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ (2010) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463(7278):184–190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4(9):677–687

    Article  PubMed  CAS  Google Scholar 

  46. Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS, Ramaekers FC (1993) Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am J Pathol 143(1):211–220

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Papotti M, Manazza AD, Chiarle R, Bussolati G (2004) Confocal microscope analysis and tridimensional reconstruction of papillary thyroid carcinoma nuclei. Virchows Arch 444(4):350–355

    Article  PubMed  Google Scholar 

  48. Asioli S, Bussolati G (2009) Emerin immunohistochemistry reveals diagnostic features of nuclear membrane arrangement in thyroid lesions. Histopathology 54(5):571–579. doi:10.1111/j.1365-2559.2009.03259.x

    Article  PubMed  Google Scholar 

  49. Asioli S, Maletta F, Pacchioni D, Lupo R, Bussolati G (2010) Cytological detection of papillary thyroid carcinomas by nuclear membrane decoration with emerin staining. Virchows Arch 457(1):43–51. doi:10.1007/s00428-010-0910-z

    Article  PubMed  CAS  Google Scholar 

  50. Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6(4):292–306

    Article  PubMed  CAS  Google Scholar 

  51. Das DK (2005) Intranuclear cytoplasmic inclusions in fine-needle aspiration smears of papillary thyroid carcinoma: a study of its morphological forms, association with nuclear grooves, and mode of formation. Diagn Cytopathol 32(5):264–268

    Article  PubMed  Google Scholar 

  52. Johannessen JV, Sobrinho-Simoes M, Finseth I, Pilstrom L (1983) Ultrastructural morphometry of thyroid neoplasms. Am J Clin Pathol 79(2):166–171

    PubMed  CAS  Google Scholar 

  53. Oyama T (1989) A histopathological, immunohistochemical and ultrastructural study of intranuclear cytoplasmic inclusions in thyroid papillary carcinoma. Virchows Arch A Pathol Anat Histopathol 414(2):91–104

    Article  PubMed  CAS  Google Scholar 

  54. Rezk S, Brynes RK, Nelson V, Thein M, Patwardhan N, Fischer A, Khan A (2004) beta-Catenin expression in thyroid follicular lesions: potential role in nuclear envelope changes in papillary carcinomas. Endocr Pathol 15(4):329–337

    PubMed  CAS  Google Scholar 

  55. Niu DF, Murata S, Kondo T, Nakazawa T, Kawasaki T, Ma DF, Yamane T, Nakamura N, Katoh R (2009) Involvement of centrosomes in nuclear irregularity of thyroid carcinoma cells. Virchows Arch 455(2):149–157. doi:10.1007/s00428-009-0802-2

    Article  PubMed  CAS  Google Scholar 

  56. Fischer AH, Taysavang P, Weber C, Wilson K (2001) Nuclear envelope organization in papillary thyroid carcinoma. Histol Histopathol 16(1):1–14

    PubMed  CAS  Google Scholar 

  57. Johannessen JV, Gould VE, Jao W, Johannessen JV, Gould VE, Jao W (1978) The fine structure of human thyroid cancer. Hum Pathol 9(4):385–400

    Article  PubMed  CAS  Google Scholar 

  58. Fischer AH, Bond JA, Taysavang P, Battles OE, Wynford-Thomas D (1998) Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 153:1443–1450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Fischer AH, Greco A, Jhiang SM, Pierotti M, Taysavang P, Shepherd D, Roccato E, Ranzi V, Weber C (2000) RET/PTC1 and TRK-T3 both induce large scale nuclear envelope and chromatin changes, and their nuclear restructuring activity requires an SHC docking site (platform presentation). In: Cold Spring Harbor symposium: dynamic organization of nuclear function. Cold Spring Harbor, New York

    Google Scholar 

  60. Fischer AH, Taysavang P, Jhiang SM (2003) Nuclear envelope irregularity is induced by RET/PTC during interphase. Am J Pathol 163(3):1091–1100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Zakowski MF, Hussain S, Pao W, Ladanyi M, Ginsberg MS, Heelan R, Miller VA, Rusch VW, Kris MG (2009) Morphologic features of adenocarcinoma of the lung predictive of response to the epidermal growth factor receptor kinase inhibitors Erlotinib and Gefitinib. Arch Pathol Lab Med 133(3):470–477

    PubMed  CAS  Google Scholar 

  62. Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, LiVolsi V, Frankel W, Kloos RT, Eng C, Pellegata NS, de la Chapelle A (2001) Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl Acad Sci U S A 98(26):15044–15049

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Borrello MG, Alberti L, Fischer A, Degl’innocenti D, Ferrario C, Gariboldi M, Marchesi F, Allavena P, Greco A, Collini P, Pilotti S, Cassinelli G, Bressan P, Fugazzola L, Mantovani A, Pierotti MA (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A 102(41):14825–14830

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Yoshida A, Nakamura Y, Imada T, Asaga T, Shimizu A, Harada M (1999) Apoptosis and proliferative activity in thyroid tumors. Surg Today 29(3):204–208

    Article  PubMed  CAS  Google Scholar 

  65. Biesterfeld S, Rickert D, Eichler S, Furste K, Mrusek S, Alfer J (2003) TV-image analysis based quantification of the proliferative activity and the apoptotic rate in thyroid tumors and thyroiditis. Anticancer Res 23(5b):4269–4275

    PubMed  Google Scholar 

  66. Badalian-Very G, Vergilio J-A, Degar BA, MacConaill LE, Brandner B, Calicchio ML, Kuo FC, Ligon AH, Stevenson KE, Kehoe SM, Garraway LA, Hahn WC, Meyerson M, Fleming MD, Rollins BJ (2010) Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919. doi:10.1182/blood-2010-04-279083

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, Sun M, Giuliany R, Yorida E, Jones S, Varhol R, Swenerton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Turashvili G, Zhao Y, Zeng T, Glover JN, Vanderhyden B, Zhao C, Parkinson CA, Jimenez-Linan M, Bowtell DD, Mes-Masson AM, Brenton JD, Aparicio SA, Boyd N, Hirst M, Gilks CB, Marra M, Huntsman DG (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360(26):2719–2729

    Article  PubMed  CAS  Google Scholar 

  68. Bond JA, Wyllie FS, Rowson J, Radulescu A, Wynford-Thomas D (1994) In vitro reconstruction of tumour initiation in a human epithelium. Oncogene 9(1):281–290

    PubMed  CAS  Google Scholar 

  69. Pirog EC, Isacson C, Szabolcs MJ, Kleter B, Quint W, Richart RM (2002) Proliferative activity of benign and neoplastic endocervical epithelium and correlation with HPV DNA detection. Int J Gynecol Pathol 21(1):22–26

    Article  PubMed  Google Scholar 

  70. D’Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22(2):446–458

    Article  PubMed Central  PubMed  Google Scholar 

  71. Schmolze DB, Standley C, Fogarty KE, Fischer AH (2011) Advances in microscopy techniques. Arch Pathol Lab Med 135(2):255–263 [Review]

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Fischer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fischer, A.H. (2014). The Diagnostic Pathology of the Nuclear Envelope in Human Cancers. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_3

Download citation

Publish with us

Policies and ethics