Skip to main content

Control of Nuclear Size by NPC Proteins

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The architecture of the cell nucleus in cancer cells is often altered in a manner associated with the tumor type and aggressiveness. Therefore, it has been the central criterion in the pathological diagnosis and prognosis of cancer. However, the molecular mechanism behind these observed changes in nuclear morphology, including size, remains completely unknown. Based on our current understanding of the physiology of the nuclear pore complex (NPC) and its constituents, which are collectively referred to as nucleoporins (Nups), we discuss how the structural and functional ablation of the NPC and Nups could directly or indirectly contribute to the changes in nuclear size observed in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Atrial fibrillation

INM:

Inner nuclear membrane

KTIP:

Kap121p transport inhibitory pathway

LINC:

Linker of nucleoskeleton and cytoskeleton

MAC:

Macronucleus

MIC:

Micronucleus

NE:

Nuclear envelope

NPC:

Nuclear pore complex

NTR:

Nuclear transport receptor

Nup:

Nucleoporin

ONM:

Outer nuclear membrane

References

  1. Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123(Pt 12):1973–1978. doi:10.1242/jcs.019042, 123/12/1973 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927. doi:10.1083/jcb.200206106, jcb.200206106 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  3. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Rout MP, Sali A (2007) Determining the architectures of macromolecular assemblies. Nature 450(7170):683–694. doi:10.1038/nature06404, nature06404 [pii]

    PubMed  CAS  Google Scholar 

  4. Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701. doi:10.1038/nature06405, nature06405 [pii]

    PubMed  CAS  Google Scholar 

  5. Fernandez-Martinez J, Rout MP (2012) A jumbo problem: mapping the structure and functions of the nuclear pore complex. Curr Opin Cell Biol 24(1):92–99. doi:10.1016/j.ceb.2011.12.013, S0955-0674(11)00175-X [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Frey S, Gorlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130(3):512–523. doi:10.1016/j.cell.2007.06.024, S0092-8674(07)00791-X [pii]

    PubMed  CAS  Google Scholar 

  7. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416. doi:10.1126/science.1142204, 318/5855/1412 [pii]

    PubMed  CAS  Google Scholar 

  8. Wente SR, Rout MP (2010) The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2(10):a000562. doi:10.1101/cshperspect.a000562, cshperspect.a000562 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Kose S, Furuta M, Imamoto N (2012) Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage. Cell 149(3):578–589. doi:10.1016/j.cell.2012.02.058, S0092-8674(12)00407-2 [pii]

    PubMed  CAS  Google Scholar 

  10. Gerace L, Huber MD (2012) Nuclear lamina at the crossroads of the cytoplasm and nucleus. J Struct Biol 177(1):24–31. doi:10.1016/j.jsb.2011.11.007, S1047-8477(11)00322-4 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4(9):677–687. doi:10.1038/nrc1430, nrc1430 [pii]

    PubMed  CAS  Google Scholar 

  12. Prokocimer M, Davidovich M, Nissim-Rafinia M, Wiesel-Motiuk N, Bar DZ, Barkan R, Meshorer E, Gruenbaum Y (2009) Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 13(6):1059–1085. doi:10.1111/j.1582-4934.2008.00676.x, JCMM676 [pii]

    PubMed  CAS  Google Scholar 

  13. Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209. doi:10.1038/nrc3219, nrc3219 [pii]

    PubMed  CAS  Google Scholar 

  14. Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer MW (2010) Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140(3):372–383. doi:10.1016/j.cell.2009.12.054, S0092-8674(09)01681-X [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Nakano H, Wang W, Hashizume C, Funasaka T, Sato H, Wong RW (2011) Unexpected role of nucleoporins in coordination of cell cycle progression. Cell Cycle 10(3):425–433, 14721 [pii]

    PubMed  CAS  Google Scholar 

  16. Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7):490–501. doi:10.1038/nrm2928, nrm2928 [pii]

    PubMed  CAS  Google Scholar 

  17. Walther TC, Alves A, Pickersgill H, Loiodice I, Hetzer M, Galy V, Hulsmann BB, Kocher T, Wilm M, Allen T, Mattaj IW, Doye V (2003) The conserved Nup107-160 complex is critical for nuclear pore complex assembly. Cell 113(2):195–206, S0092867403002356 [pii]

    PubMed  CAS  Google Scholar 

  18. Franz C, Walczak R, Yavuz S, Santarella R, Gentzel M, Askjaer P, Galy V, Hetzer M, Mattaj IW, Antonin W (2007) MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep 8(2):165–172. doi:10.1038/sj.embor.7400889, 7400889 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  19. D’Angelo MA, Anderson DJ, Richard E, Hetzer MW (2006) Nuclear pores form de novo from both sides of the nuclear envelope. Science 312(5772):440–443. doi:10.1126/science.1124196, 312/5772/440 [pii]

    PubMed  Google Scholar 

  20. Levy DL, Heald R (2010) Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell 143(2):288–298. doi:10.1016/j.cell.2010.09.012, S0092-8674(10)01060-3 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Newport JW, Wilson KL, Dunphy WG (1990) A lamin-independent pathway for nuclear envelope assembly. J Cell Biol 111(6 Pt 1):2247–2259

    PubMed  CAS  Google Scholar 

  22. Maeshima K, Iino H, Hihara S, Funakoshi T, Watanabe A, Nishimura M, Nakatomi R, Yahata K, Imamoto F, Hashikawa T, Yokota H, Imamoto N (2010) Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol 17(9):1065–1071. doi:10.1038/nsmb.1878, nsmb.1878 [pii]

    PubMed  CAS  Google Scholar 

  23. Ribbeck K, Gorlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20(6):1320–1330. doi:10.1093/emboj/20.6.1320

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Riddick G, Macara IG (2005) A systems analysis of importin-{alpha}-{beta} mediated nuclear protein import. J Cell Biol 168(7):1027–1038. doi:10.1083/jcb.200409024, jcb.200409024 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Theerthagiri G, Eisenhardt N, Schwarz H, Antonin W (2010) The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex. J Cell Biol 189(7):1129–1142. doi:10.1083/jcb.200912045, jcb.200912045 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Brandt A, Papagiannouli F, Wagner N, Wilsch-Brauninger M, Braun M, Furlong EE, Loserth S, Wenzl C, Pilot F, Vogt N, Lecuit T, Krohne G, Grosshans J (2006) Developmental control of nuclear size and shape by Kugelkern and Kurzkern. Curr Biol 16(6):543–552. doi:10.1016/j.cub.2006.01.051, S0960-9822(06)01060-8 [pii]

    PubMed  CAS  Google Scholar 

  27. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19(9):2793–2803. doi:10.1105/tpc.107.053231, tpc.107.053231 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Antonin W, Ungricht R, Kutay U (2011) Traversing the NPC along the pore membrane: targeting of membrane proteins to the INM. Nucleus 2(2):87–91. doi:10.4161/nucl.2.2.14637, 1949-1034-2-2-3 [pii]

    PubMed Central  PubMed  Google Scholar 

  29. Hawryluk-Gara LA, Shibuya EK, Wozniak RW (2005) Vertebrate Nup53 interacts with the nuclear lamina and is required for the assembly of a Nup93-containing complex. Mol Biol Cell 16(5):2382–2394. doi:10.1091/mbc.E04-10-0857, E04-10-0857 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Lussi YC, Hugi I, Laurell E, Kutay U, Fahrenkrog B (2011) The nucleoporin Nup88 is interacting with nuclear lamin A. Mol Biol Cell 22(7):1080–1090. doi:10.1091/mbc.E10-05-0463, mbc.E10-05-0463 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Smythe C, Jenkins HE, Hutchison CJ (2000) Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J 19(15):3918–3931. doi:10.1093/emboj/19.15.3918

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444. doi:10.1146/annurev-cellbio-100109-104037

    PubMed  CAS  Google Scholar 

  33. Talamas JA, Hetzer MW (2011) POM121 and Sun1 play a role in early steps of interphase NPC assembly. J Cell Biol 194(1):27–37. doi:10.1083/jcb.201012154, jcb.201012154 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Funakoshi T, Maeshima K, Yahata K, Sugano S, Imamoto F, Imamoto N (2007) Two distinct human POM121 genes: requirement for the formation of nuclear pore complexes. FEBS Lett 581(25):4910–4916. doi:10.1016/j.febslet.2007.09.021, S0014-5793(07)01003-4 [pii]

    PubMed  CAS  Google Scholar 

  35. Mackay DR, Elgort SW, Ullman KS (2009) The nucleoporin Nup153 has separable roles in both early mitotic progression and the resolution of mitosis. Mol Biol Cell 20(6):1652–1660. doi:10.1091/mbc.E08-08-0883, E08-08-0883 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82(24):8527–8529

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol 2(11):e342. doi:10.1371/journal.pbio.0020342

    PubMed Central  PubMed  Google Scholar 

  38. Casolari JM, Brown CR, Drubin DA, Rando OJ, Silver PA (2005) Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev 19(10):1188–1198. doi:10.1101/gad.1307205, 19/10/1188 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  39. Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117(4):427–439, S0092867404004489 [pii]

    PubMed  CAS  Google Scholar 

  40. Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441(7094):774–778. doi:10.1038/nature04845, nature04845 [pii]

    PubMed  CAS  Google Scholar 

  41. Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6(11):1114–1121. doi:10.1038/ncb1184, ncb1184 [pii]

    PubMed  CAS  Google Scholar 

  42. Kalverda B, Pickersgill H, Shloma VV, Fornerod M (2010) Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140(3):360–371. doi:10.1016/j.cell.2010.01.011, S0092-8674(10)00012-7 [pii]

    PubMed  CAS  Google Scholar 

  43. Vaquerizas JM, Suyama R, Kind J, Miura K, Luscombe NM, Akhtar A (2010) Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet 6(2):e1000846. doi:10.1371/journal.pgen.1000846

    PubMed Central  PubMed  Google Scholar 

  44. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122(Pt 10):1477–1486. doi:10.1242/jcs.037333, 122/10/1477 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Anderson DJ, Hetzer MW (2007) Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol 9(10):1160–1166. doi:10.1038/ncb1636, ncb1636 [pii]

    PubMed  CAS  Google Scholar 

  46. Anderson DJ, Vargas JD, Hsiao JP, Hetzer MW (2009) Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J Cell Biol 186(2):183–191. doi:10.1083/jcb.200901106, jcb.200901106 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Clever M, Mimura Y, Funakoshi T, Imamoto N (2013) Regulation and coordination of nuclear envelope and nuclear pore complex assembly. Nucleus 4(2):105–114. doi:10.4161/nucl.23796, 23796 [pii]

    PubMed Central  PubMed  Google Scholar 

  48. Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmerman E, Elbaum M, Forbes DJ (2003) Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell 11(4):853–864, S1097276503001163 [pii]

    PubMed  CAS  Google Scholar 

  49. Rasala BA, Orjalo AV, Shen Z, Briggs S, Forbes DJ (2006) ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc Natl Acad Sci U S A 103(47):17801–17806. doi:10.1073/pnas.0608484103, 0608484103 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Siniossoglou S (2013) Phospholipid metabolism and nuclear function: roles of the lipin family of phosphatidic acid phosphatases. Biochim Biophys Acta 1831(3):575–581. doi:10.1016/j.bbalip.2012.09.014, S1388-1981(12)00211-9 [pii]

    PubMed  CAS  Google Scholar 

  51. Korfali N, Wilkie GS, Swanson SK, Srsen V, de Las HJ, Batrakou DG, Malik P, Zuleger N, Kerr AR, Florens L, Schirmer EC (2012) The nuclear envelope proteome differs notably between tissues. Nucleus 3(6):552–564. doi:10.4161/nucl.22257, 22257 [pii]

    PubMed Central  PubMed  Google Scholar 

  52. Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N, Demmers J, Fornerod M, Melchior F, Hoogenraad CC, Medema RH, Akhmanova A (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8(4):e1000350. doi:10.1371/journal.pbio.1000350

    PubMed Central  PubMed  Google Scholar 

  53. Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192(5):855–871. doi:10.1083/jcb.201007118, jcb.201007118 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Wozniak R, Burke B, Doye V (2010) Nuclear transport and the mitotic apparatus: an evolving relationship. Cell Mol Life Sci 67(13):2215–2230. doi:10.1007/s00018-010-0325-7

    PubMed  CAS  Google Scholar 

  55. Jeganathan KB, Malureanu L, van Deursen JM (2005) The Rae1-Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438(7070):1036–1039. doi:10.1038/nature04221, nature04221 [pii]

    PubMed  CAS  Google Scholar 

  56. Platani M, Santarella-Mellwig R, Posch M, Walczak R, Swedlow JR, Mattaj IW (2009) The Nup107-160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex. Mol Biol Cell 20(24):5260–5275. doi:10.1091/mbc.E09-05-0377, E09-05-0377 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Mackay DR, Makise M, Ullman KS (2010) Defects in nuclear pore assembly lead to activation of an Aurora B-mediated abscission checkpoint. J Cell Biol 191(5):923–931. doi:10.1083/jcb.201007124, jcb.201007124 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Edens LJ, White KH, Jevtic P, Li X, Levy DL (2012) Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. doi:10.1016/j.tcb.2012.11.004, S0962-8924(12)00217-6 [pii]

    PubMed  Google Scholar 

  59. Neumann FR, Nurse P (2007) Nuclear size control in fission yeast. J Cell Biol 179(4):593–600. doi:10.1083/jcb.200708054, jcb.200708054 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162(5):809–820. doi:10.1083/jcb.200304096, jcb.200304096 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Martinez N, Alonso A, Moragues MD, Ponton J, Schneider J (1999) The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Cancer Res 59(21):5408–5411

    PubMed  CAS  Google Scholar 

  62. Agudo D, Gomez-Esquer F, Martinez-Arribas F, Nunez-Villar MJ, Pollan M, Schneider J (2004) Nup88 mRNA overexpression is associated with high aggressiveness of breast cancer. Int J Cancer 109(5):717–720. doi:10.1002/ijc.20034

    PubMed  CAS  Google Scholar 

  63. Xu S, Powers MA (2009) Nuclear pore proteins and cancer. Semin Cell Dev Biol 20(5):620–630. doi:10.1016/j.semcdb.2009.03.003, S1084-9521(09)00041-X [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  64. De Keersmaecker K, Rocnik JL, Bernad R, Lee BH, Leeman D, Gielen O, Verachtert H, Folens C, Munck S, Marynen P, Fornerod M, Gilliland DG, Cools J (2008) Kinase activation and transformation by NUP214-ABL1 is dependent on the context of the nuclear pore. Mol Cell 31(1):134–142. doi:10.1016/j.molcel.2008.05.005, S1097-2765(08)00336-5 [pii]

    PubMed  Google Scholar 

  65. Takeda A, Sarma NJ, Abdul-Nabi AM, Yaseen NR (2010) Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins. J Biol Chem 285(21):16248–16257. doi:10.1074/jbc.M109.048785, M109.048785 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Hernandez P, Sole X, Valls J, Moreno V, Capella G, Urruticoechea A, Pujana MA (2007) Integrative analysis of a cancer somatic mutome. Mol Cancer 6:13. doi:10.1186/1476-4598-6-13, 1476-4598-6-13 [pii]

    PubMed Central  PubMed  Google Scholar 

  67. Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4(2):106–117. doi:10.1038/nrc1274, nrc1274 [pii]

    PubMed  CAS  Google Scholar 

  68. Beg AA, Ruben SM, Scheinman RI, Haskill S, Rosen CA, Baldwin AS Jr (1992) I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev 6(10):1899–1913

    PubMed  CAS  Google Scholar 

  69. Ganchi PA, Sun SC, Greene WC, Ballard DW (1992) I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol Biol Cell 3(12):1339–1352

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Henkel T, Zabel U, van Zee K, Muller JM, Fanning E, Baeuerle PA (1992) Intramolecular masking of the nuclear location signal and dimerization domain in the precursor for the p50 NF-kappa B subunit. Cell 68(6):1121–1133, 0092-8674(92)90083-O [pii]

    PubMed  CAS  Google Scholar 

  71. Gluz O, Wild P, Meiler R, Diallo-Danebrock R, Ting E, Mohrmann S, Schuett G, Dahl E, Fuchs T, Herr A, Gaumann A, Frick M, Poremba C, Nitz UA, Hartmann A (2008) Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123(6):1433–1438. doi:10.1002/ijc.23628

    PubMed  CAS  Google Scholar 

  72. Riddick G, Macara IG (2007) The adapter importin-alpha provides flexible control of nuclear import at the expense of efficiency. Mol Syst Biol 3:118. doi:10.1038/msb4100160, msb4100160 [pii]

    PubMed Central  PubMed  Google Scholar 

  73. Maul GG, Maul HM, Scogna JE, Lieberman MW, Stein GS, Hsu BY, Borun TW (1972) Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J Cell Biol 55(2):433–447

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Maeshima K, Yahata K, Sasaki Y, Nakatomi R, Tachibana T, Hashikawa T, Imamoto F, Imamoto N (2006) Cell-cycle-dependent dynamics of nuclear pores: pore-free islands and lamins. J Cell Sci 119(Pt 21):4442–4451. doi:10.1242/jcs.03207, 119/21/4442 [pii]

    PubMed  CAS  Google Scholar 

  75. Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN (2007) Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J Biol Chem 282(32):23081–23088. doi:10.1074/jbc.M703602200, M703602200 [pii]

    PubMed  CAS  Google Scholar 

  76. Lewin JM, Lwaleed BA, Cooper AJ, Birch BR (2007) The direct effect of nuclear pores on nuclear chemotherapeutic concentration in multidrug resistant bladder cancer: the nuclear sparing phenomenon. J Urol 177(4):1526–1530. doi:10.1016/j.juro.2006.11.048, S0022-5347(06)03131-4 [pii]

    PubMed  CAS  Google Scholar 

  77. Raices M, D’Angelo MA (2012) Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol 13(11):687–699. doi:10.1038/nrm3461, nrm3461 [pii]

    PubMed  CAS  Google Scholar 

  78. D’Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22(2):446–458. doi:10.1016/j.devcel.2011.11.021, S1534-5807(11)00531-4 [pii]

    PubMed Central  PubMed  Google Scholar 

  79. Olsson M, Scheele S, Ekblom P (2004) Limited expression of nuclear pore membrane glycoprotein 210 in cell lines and tissues suggests cell-type specific nuclear pores in metazoans. Exp Cell Res 292(2):359–370, S0014482703004889 [pii]

    PubMed  CAS  Google Scholar 

  80. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17(5):626–638. doi:10.1016/j.devcel.2009.10.016, S1534-5807(09)00438-9 [pii]

    PubMed  CAS  Google Scholar 

  81. Tullio-Pelet A, Salomon R, Hadj-Rabia S, Mugnier C, de Laet MH, Chaouachi B, Bakiri F, Brottier P, Cattolico L, Penet C, Begeot M, Naville D, Nicolino M, Chaussain JL, Weissenbach J, Munnich A, Lyonnet S (2000) Mutant WD-repeat protein in triple-A syndrome. Nat Genet 26(3):332–335. doi:10.1038/81642

    PubMed  CAS  Google Scholar 

  82. Zhang X, Chen S, Yoo S, Chakrabarti S, Zhang T, Ke T, Oberti C, Yong SL, Fang F, Li L, de la Fuente R, Wang L, Chen Q, Wang QK (2008) Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135(6):1017–1027. doi:10.1016/j.cell.2008.10.022, S0092-8674(08)01314-7 [pii]

    PubMed  CAS  Google Scholar 

  83. Basel-Vanagaite L, Muncher L, Straussberg R, Pasmanik-Chor M, Yahav M, Rainshtein L, Walsh CA, Magal N, Taub E, Drasinover V, Shalev H, Attia R, Rechavi G, Simon AJ, Shohat M (2006) Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol 60(2):214–222. doi:10.1002/ana.20902

    PubMed  CAS  Google Scholar 

  84. Neilson DE, Adams MD, Orr CM, Schelling DK, Eiben RM, Kerr DS, Anderson J, Bassuk AG, Bye AM, Childs AM, Clarke A, Crow YJ, Di Rocco M, Dohna-Schwake C, Dueckers G, Fasano AE, Gika AD, Gionnis D, Gorman MP, Grattan-Smith PJ, Hackenberg A, Kuster A, Lentschig MG, Lopez-Laso E, Marco EJ, Mastroyianni S, Perrier J, Schmitt-Mechelke T, Servidei S, Skardoutsou A, Uldall P, van der Knaap MS, Goglin KC, Tefft DL, Aubin C, de Jager P, Hafler D, Warman ML (2009) Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet 84(1):44–51. doi:10.1016/j.ajhg.2008.12.009, S0002-9297(08)00630-7 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Wu M, Allis CD, Richman R, Cook RG, Gorovsky MA (1986) An intervening sequence in an unusual histone H1 gene of Tetrahymena thermophila. Proc Natl Acad Sci U S A 83(22):8674–8678

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Wu M, Allis CD, Sweet MT, Cook RG, Thatcher TH, Gorovsky MA (1994) Four distinct and unusual linker proteins in a mitotically dividing nucleus are derived from a 71-kilodalton polyprotein, lack p34cdc2 sites, and contain protein kinase A sites. Mol Cell Biol 14(1):10–20

    PubMed Central  PubMed  Google Scholar 

  87. Shen X, Yu L, Weir JW, Gorovsky MA (1995) Linker histones are not essential and affect chromatin condensation in vivo. Cell 82(1):47–56, 0092-8674(95)90051-9 [pii]

    PubMed  CAS  Google Scholar 

  88. Malone CD, Falkowska KA, Li AY, Galanti SE, Kanuru RC, LaMont EG, Mazzarella KC, Micev AJ, Osman MM, Piotrowski NK, Suszko JW, Timm AC, Xu MM, Liu L, Chalker DL (2008) Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila. Eukaryot Cell 7(9):1487–1499. doi:10.1128/EC.00193-08, EC.00193-08 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Iwamoto M, Mori C, Kojidani T, Bunai F, Hori T, Fukagawa T, Hiraoka Y, Haraguchi T (2009) Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate tetrahymena. Curr Biol 19(10):843–847. doi:10.1016/j.cub.2009.03.055, S0960-9822(09)00909-9 [pii]

    PubMed  CAS  Google Scholar 

  90. Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM (2008) Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 15(5):657–667. doi:10.1016/j.devcel.2008.08.020, S1534-5807(08)00344-4 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  91. D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136(2):284–295. doi:10.1016/j.cell.2008.11.037, S0092-8674(08)01512-2 [pii]

    PubMed Central  PubMed  Google Scholar 

  92. Galy V, Mattaj IW, Askjaer P (2003) Caenorhabditis elegans nucleoporins Nup93 and Nup205 determine the limit of nuclear pore complex size exclusion in vivo. Mol Biol Cell 14(12):5104–5115. doi:10.1091/mbc.E03-04-0237, E03-04-0237 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Patre M, Tabbert A, Hermann D, Walczak H, Rackwitz HR, Cordes VC, Ferrando-May E (2006) Caspases target only two architectural components within the core structure of the nuclear pore complex. J Biol Chem 281(2):1296–1304. doi:10.1074/jbc.M511717200, M511717200 [pii]

    PubMed  CAS  Google Scholar 

  94. Antonin W, Ellenberg J, Dultz E (2008) Nuclear pore complex assembly through the cell cycle: regulation and membrane organization. FEBS Lett 582(14):2004–2016. doi:10.1016/j.febslet.2008.02.067, S0014-5793(08)00190-7 [pii]

    PubMed  CAS  Google Scholar 

  95. Glavy JS, Krutchinsky AN, Cristea IM, Berke IC, Boehmer T, Blobel G, Chait BT (2007) Cell-cycle-dependent phosphorylation of the nuclear pore Nup107-160 subcomplex. Proc Natl Acad Sci U S A 104(10):3811–3816. doi:10.1073/pnas.0700058104, 0700058104 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E (2005) Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol Biol Cell 16(11):5152–5162. doi:10.1091/mbc.E05-07-0642, E05-07-0642 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Doucet CM, Talamas JA, Hetzer MW (2010) Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141(6):1030–1041. doi:10.1016/j.cell.2010.04.036, S0092-8674(10)00490-3 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Dultz E, Ellenberg J (2010) Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J Cell Biol 191(1):15–22. doi:10.1083/jcb.201007076, jcb.201007076 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Laurell E, Beck K, Krupina K, Theerthagiri G, Bodenmiller B, Horvath P, Aebersold R, Antonin W, Kutay U (2011) Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 144(4):539–550. doi:10.1016/j.cell.2011.01.012, S0092-8674(11)00013-4 [pii]

    PubMed  CAS  Google Scholar 

  100. De Souza CP, Osmani AH, Hashmi SB, Osmani SA (2004) Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 14(22):1973–1984. doi:10.1016/j.cub.2004.10.050, S096098220400853X [pii]

    PubMed  Google Scholar 

  101. Osmani AH, Davies J, Liu HL, Nile A, Osmani SA (2006) Systematic deletion and mitotic localization of the nuclear pore complex proteins of Aspergillus nidulans. Mol Biol Cell 17(12):4946–4961. doi:10.1091/mbc.E06-07-0657, E06-07-0657 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Makhnevych T, Lusk CP, Anderson AM, Aitchison JD, Wozniak RW (2003) Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115(7):813–823, S0092867403009863 [pii]

    PubMed  CAS  Google Scholar 

  103. Cairo LV, Ptak C, Wozniak RW (2013) Mitosis-specific regulation of nuclear transport by the spindle assembly checkpoint protein Mad1p. Mol Cell 49(1):109–120. doi:10.1016/j.molcel.2012.10.017, S1097-2765(12)00894-5 [pii]

    PubMed  CAS  Google Scholar 

  104. Frey S, Gorlich D (2009) FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 28(17):2554–2567. doi:10.1038/emboj.2009.199, emboj2009199 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Hulsmann BB, Labokha AA, Gorlich D (2012) The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150(4):738–751. doi:10.1016/j.cell.2012.07.019, S0092-8674(12)00887-2 [pii]

    PubMed  Google Scholar 

  106. Labokha AA, Gradmann S, Frey S, Hulsmann BB, Urlaub H, Baldus M, Gorlich D (2012) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32(2):204–218. doi:10.1038/emboj.2012.302, emboj2012302 [pii]

    PubMed Central  PubMed  Google Scholar 

  107. Finlay DR, Newmeyer DD, Price TM, Forbes DJ (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104(2):189–200

    PubMed  CAS  Google Scholar 

  108. Hanover JA, Cohen CK, Willingham MC, Park MK (1987) O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 262(20):9887–9894

    PubMed  CAS  Google Scholar 

  109. Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104(5):1157–1164

    PubMed  CAS  Google Scholar 

  110. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M (2008) Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 31(3):438–448. doi:10.1016/j.molcel.2008.07.007, S1097-2765(08)00493-0 [pii]

    PubMed  CAS  Google Scholar 

  111. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP (2008) A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105(31):10762–10767. doi:10.1073/pnas.0805139105, 0805139105 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103(14):5391–5396. doi:10.1073/pnas.0507066103, 0507066103 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  113. Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori S (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16(10):1026–1035. doi:10.1038/nsmb.1656, nsmb.1656 [pii]

    PubMed  CAS  Google Scholar 

  114. Santamaria A, Wang B, Elowe S, Malik R, Zhang F, Bauer M, Schmidt A, Sillje HH, Korner R, Nigg EA (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle. Mol Cell Proteomics 10(1):M110 004457. doi:10.1074/mcp.M110.004457, M110.004457 [pii]

    PubMed Central  PubMed  Google Scholar 

  115. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4(179):rs5. doi:10.1126/scisignal.2001497, 4/179/rs5 [pii]

    PubMed  CAS  Google Scholar 

  116. Galisson F, Mahrouche L, Courcelles M, Bonneil E, Meloche S, Chelbi-Alix MK, Thibault P (2011) A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells. Mol Cell Proteomics 10(2):M110 004796. doi:10.1074/mcp.M110.004796, M110.004796 [pii]

    PubMed Central  PubMed  Google Scholar 

  117. Oshikawa K, Matsumoto M, Oyamada K, Nakayama KI (2012) Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin. J Proteome Res 11(2):796–807. doi:10.1021/pr200668y

    PubMed  CAS  Google Scholar 

  118. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M, Choudhary C (2011) A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 10(10):M111 013284. doi:10.1074/mcp.M111.013284, M111.013284 [pii]

    PubMed Central  PubMed  Google Scholar 

  119. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. doi:10.1126/science.1175371, 1175371 [pii]

    PubMed  CAS  Google Scholar 

  120. Xie X, Feng S, Vuong H, Liu Y, Goodison S, Lubman DM (2010) A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis 31(11):1842–1852. doi:10.1002/elps.200900752

    PubMed Central  PubMed  CAS  Google Scholar 

  121. Loewinger L, McKeon F (1988) Mutations in the nuclear lamin proteins resulting in their aberrant assembly in the cytoplasm. EMBO J 7(8):2301–2309

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Mical TI, Monteiro MJ (1998) The role of sequences unique to nuclear intermediate filaments in the targeting and assembly of human lamin B: evidence for lack of interaction of lamin B with its putative receptor. J Cell Sci 111(Pt 23):3471–3485

    PubMed  CAS  Google Scholar 

  123. Zuleger N, Kelly DA, Richardson AC, Kerr AR, Goldberg MW, Goryachev AB, Schirmer EC (2011) System analysis shows distinct mechanisms and common principles of nuclear envelope protein dynamics. J Cell Biol 193(1):109–123. doi:10.1083/jcb.201009068, jcb.201009068 [pii]

    PubMed Central  PubMed  CAS  Google Scholar 

  124. King MC, Lusk CP, Blobel G (2006) Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442(7106):1003–1007. doi:10.1038/nature05075, nature05075 [pii]

    PubMed  CAS  Google Scholar 

  125. Meinema AC, Laba JK, Hapsari RA, Otten R, Mulder FA, Kralt A, van den Bogaart G, Lusk CP, Poolman B, Veenhoff LM (2011) Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science 333(6038):90–93. doi:10.1126/science.1205741, science.1205741 [pii]

    PubMed  CAS  Google Scholar 

  126. Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW (2010) Extensive Crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3(104):ra2. doi: 10.1126/scisignal.2000526

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Imamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takagi, M., Imamoto, N. (2014). Control of Nuclear Size by NPC Proteins. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_26

Download citation

Publish with us

Policies and ethics