Skip to main content

Nuclear Envelope Invaginations and Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

The nuclear envelope (NE) surrounds the nucleus and separates it from the cytoplasm. The NE is not a passive structural component, but rather contributes to various cellular processes such as genome organization, transcription, signaling, and stress responses. Although the NE is mostly a smooth surface, it also forms invaginations that can reach deep into the nucleoplasm and may even traverse the nucleus completely. Cancer cells are generally characterized by irregularities and invaginations of the NE that are of diagnostic and prognostic significance. In the current chapter, we describe the link between nuclear invaginations and irregularities with cancer and explore possible mechanistic roles they might have in tumorigenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CCT-a:

CTP:phosphocholine-cytidylyltransferase-α

HCC:

Hepatocellular carcinoma

HGPS:

Hutchinson–Gilford Progeria Syndrome

INM:

Inner nuclear membrane

MARs:

Matrix attachment regions

NE:

Nuclear envelope

NR:

Nucleoplasmic reticulum

PaCa:

Pancreatic carcinoma

References

  1. Prunuske AJ, Ullman KS (2006) The nuclear envelope: form and reformation. Curr Opin Cell Biol 18(1):108–116. doi:10.1016/j.ceb.2005.12.004, S0955-0674(05)00185-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  2. Dauer WT, Worman HJ (2009) The nuclear envelope as a signaling node in development and disease. Dev Cell 17(5):626–638. doi:10.1016/j.devcel.2009.10.016, S1534-5807(09)00438-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  3. Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11(5):317–328. doi:10.1038/nrm2894, nrm2894 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Redwood AB, Perkins SM, Vanderwaal RP, Feng Z, Biehl KJ, Gonzalez-Suarez I, Morgado-Palacin L, Shi W, Sage J, Roti-Roti JL, Stewart CL, Zhang J, Gonzalo S (2011) A dual role for A-type lamins in DNA double-strand break repair. Cell Cycle 10(15):2549–2560. doi:16531 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226(2):316–325. doi:10.1002/path.2999

    Article  PubMed  CAS  Google Scholar 

  6. Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ (2006) Nuclear lamins: laminopathies and their role in premature ageing. Physiol Rev 86(3):967–1008. doi:10.1152/physrev. 00047.2005, 86/3/967 [pii]

    Google Scholar 

  7. Kamei H (1994) Relationship of nuclear invaginations to perinuclear rings composed of intermediate filaments in MIA PaCa-2 and some other cells. Cell Struct Funct 19(3):123–132

    Article  PubMed  CAS  Google Scholar 

  8. Fricker M, Hollinshead M, White N, Vaux D (1997) The convoluted nucleus. Trends Cell Biol 7(5):181. doi:S0962-8924(97)84084-6, [pii]10.1016/S0962-8924(97)84084-6

    Article  PubMed  CAS  Google Scholar 

  9. Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 136(3):531–544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336. doi:10.1126/science.1156947, 320/5881/1332 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Clubb BH, Locke M (1998) 3T3 cells have nuclear invaginations containing F-actin. Tissue Cell 30(6):684–691

    Article  PubMed  CAS  Google Scholar 

  12. Brandes D, Schofield BH, Anton E (1965) Nuclear mitochondria? Science 149(3690):1373–1374

    Article  PubMed  CAS  Google Scholar 

  13. Malhas A, Goulbourne C, Vaux DJ (2011) The nucleoplasmic reticulum: form and function. Trends Cell Biol 21(6):362–373. doi:10.1016/j.tcb.2011.03.008, S0962-8924(11)00050-X [pii]

    Article  PubMed  CAS  Google Scholar 

  14. True LD, Jordan CD (2008) The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype. J Cell Biochem 104(6):1994–2003. doi:10.1002/jcb.21478

    Article  PubMed  CAS  Google Scholar 

  15. Gupton SL, Collings DA, Allen NS (2006) Endoplasmic reticulum targeted GFP reveals ER organization in tobacco NT-1 cells during cell division. Plant Physiol Biochem 44(2–3):95–105. doi:10.1016/j.plaphy.2006.03.003, S0981-9428(06)00033-7 [pii]

    Article  PubMed  CAS  Google Scholar 

  16. Fischer AH, Taysavang P, Jhiang SM (2003) Nuclear envelope irregularity is induced by RET/PTC during interphase. Am J Pathol 163(3):1091–1100. doi:10.1016/S0002-9440(10)63468-2, S0002-9440(10)63468-2 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Bootman MD, Fearnley C, Smyrnias I, MacDonald F, Roderick HL (2009) An update on nuclear calcium signalling. J Cell Sci 122(Pt 14):2337–2350. doi:10.1242/jcs.028100, 122/14/2337 [pii]

    Article  PubMed  CAS  Google Scholar 

  18. Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209. doi:10.1038/nrc3219, nrc3219 [pii]

    PubMed  CAS  Google Scholar 

  19. Mounkes L, Kozlov S, Burke B, Stewart CL (2003) The laminopathies: nuclear structure meets disease. Curr Opin Genet Dev 13(3):223–230, S0959437X03000583 [pii]

    Article  PubMed  CAS  Google Scholar 

  20. McClintock D, Gordon LB, Djabali K (2006) Hutchinson-Gilford progeria mutant lamin A primarily targets human vascular cells as detected by an anti-Lamin A G608G antibody. Proc Natl Acad Sci U S A 103(7):2154–2159. doi:10.1073/pnas.0511133103, 0511133103 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300(5628):2055. doi:10.1126/science.1084125, 1084125 [pii]

    Article  PubMed  Google Scholar 

  22. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063. doi:10.1126/science.1127168, 1127168 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Tang Y, Chen Y, Jiang H, Nie D (2010) Promotion of tumor development in prostate cancer by progerin. Cancer Cell Int 10:47. doi:10.1186/1475-2867-10-47, 1475-2867-10-47 [pii]

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4(9):677–687. doi:10.1038/nrc1430, nrc1430 [pii]

    Article  PubMed  CAS  Google Scholar 

  25. Bussolati G, Marchio C, Gaetano L, Lupo R, Sapino A (2008) Pleomorphism of the nuclear envelope in breast cancer: a new approach to an old problem. J Cell Mol Med 12(1):209–218. doi:10.1111/j.1582-4934.2007.00176.x, JCMM176 [pii]

    Article  PubMed  Google Scholar 

  26. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5):403–410

    Article  PubMed  CAS  Google Scholar 

  27. Boyd J, Pienta KJ, Getzenberg RH, Coffey DS, Barrett JC (1991) Preneoplastic alterations in nuclear morphology that accompany loss of tumor suppressor phenotype. J Natl Cancer Inst 83(12):862–866

    Article  PubMed  CAS  Google Scholar 

  28. Bloom HJ, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11(3): 359–377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Giardina C, Caniglia DM, D'Aprile M, Lettini T, Serio G, Cipriani T, Ricco R, Pesce Delfino V (1996) Nuclear morphometry in squamous cell carcinoma (SCC) of the tongue. Eur J Cancer B Oral Oncol 32B(2):91–96

    Article  PubMed  CAS  Google Scholar 

  30. Nativ O, Sabo E, Bejar J, Halachmi S, Moskovitz B, Miselevich I (1996) A comparison between histological grade and nuclear morphometry for predicting the clinical outcome of localized renal cell carcinoma. Br J Urol 78(1):33–38

    Article  PubMed  CAS  Google Scholar 

  31. Partin AW, Gearhart JP, Leonard MP, Leventhal BG, Yoo JK, Crooks D, Epstein JI, Beckwith JB (1993) The use of nuclear morphometry to predict prognosis in pediatric urologic malignancies: a review. Med Pediatr Oncol 21(3):222–229

    Article  PubMed  CAS  Google Scholar 

  32. Epstein JI, Berry SJ, Eggleston JC (1984) Nuclear roundness factor. A predictor of progression in untreated Stage A2 prostate cancer. Cancer 54(8):1666–1671

    Article  PubMed  CAS  Google Scholar 

  33. Mohler JL, Figlesthaler WM, Zhang XZ, Partin AW, Maygarden SJ (1994) Nuclear shape analysis for the assessment of local invasion and metastases in clinically localized prostate carcinoma. Cancer 74(11):2996–3001

    Article  PubMed  CAS  Google Scholar 

  34. Partin AW, Steinberg GD, Pitcock RV, Wu L, Piantadosi S, Coffey DS, Epstein JI (1992) Use of nuclear morphometry, gleason histologic scoring, clinical stage, and age to predict disease-free survival among patients with prostate cancer. Cancer 70(1):161–168

    Article  PubMed  CAS  Google Scholar 

  35. Liu CQ, Sasaki H, Fahey MT, Sakamoto A, Sato S, Tanaka T (1999) Prognostic value of nuclear morphometry in patients with TNM stage T1 ovarian clear cell adenocarcinoma. Br J Cancer 79(11–12):1736–1741. doi:10.1038/sj.bjc.6690276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Asioli S, Bussolati G (2009) Emerin immunohistochemistry reveals diagnostic features of nuclear membrane arrangement in thyroid lesions. Histopathology 54(5):571–579. doi:10.1111/j.1365-2559.2009.03259.x, HIS3259 [pii]

    Article  PubMed  Google Scholar 

  37. Asioli S, Maletta F, Pacchioni D, Lupo R, Bussolati G (2010) Cytological detection of papillary thyroid carcinomas by nuclear membrane decoration with emerin staining. Virchows Arch 457(1):43–51. doi:10.1007/s00428-010-0910-z

    Article  PubMed  CAS  Google Scholar 

  38. Batistatou A, Scopa CD (2009) Pathogenesis and diagnostic significance of nuclear grooves in thyroid and other sites. Int J Surg Pathol 17(2):107–110. doi:10.1177/1066896908316071, 1066896908316071 [pii]

    Article  PubMed  Google Scholar 

  39. Bussolati G (2008) Proper detection of the nuclear shape: ways and significance. Rom J Morphol Embryol 49(4):435–439, 490408435439 [pii]

    PubMed  CAS  Google Scholar 

  40. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, Pacini F (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86(7):3211–3216

    PubMed  CAS  Google Scholar 

  41. Pisarchik AV, Ermak G, Fomicheva V, Kartel NA, Figge J (1998) The ret/PTC1 rearrangement is a common feature of Chernobyl-associated papillary thyroid carcinomas from Belarus. Thyroid 8(2):133–139

    Article  PubMed  CAS  Google Scholar 

  42. Santoro M, Sabino N, Ishizaka Y, Ushijima T, Carlomagno F, Cerrato A, Grieco M, Battaglia C, Martelli ML, Paulin C et al (1993) Involvement of RET oncogene in human tumours: specificity of RET activation to thyroid tumours. Br J Cancer 68(3):460–464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Fischer AH, Bond JA, Taysavang P, Battles OE, Wynford-Thomas D (1998) Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 153(5):1443–1450. doi:10.1016/S0002-9440(10)65731-8, S0002-9440(10)65731-8 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Wynford-Thomas D (1997) Origin and progression of thyroid epithelial tumours: cellular and molecular mechanisms. Horm Res 47(4–6):145–157

    Article  PubMed  CAS  Google Scholar 

  45. Fischer AH, Taysavang P, Weber CJ, Wilson KL (2001) Nuclear envelope organization in papillary thyroid carcinoma. Histol Histopathol 16(1):1–14

    PubMed  CAS  Google Scholar 

  46. Franke WW, Schinko W (1969) Nuclear shape in muscle cells. J Cell Biol 42(1):326–331

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Lane BP (1965) Alterations in the cytologic detail of intestinal smooth muscle cells in various stages of contraction. J Cell Biol 27(1):199–213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Dey P (2010) Cancer nucleus: morphology and beyond. Diagn Cytopathol 38(5):382–390. doi:10.1002/dc.21234

    PubMed  Google Scholar 

  49. Luo RX, Postigo AA, Dean DC (1998) Rb interacts with histone deacetylase to repress transcription. Cell 92(4):463–473, S0092-8674(00)80940-X [pii]

    Article  PubMed  CAS  Google Scholar 

  50. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25(3):338–342. doi:10.1038/77124

    Article  PubMed  CAS  Google Scholar 

  51. Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (2001) Rb targets histone H3 methylation and HP1 to promoters. Nature 412(6846):561–565. doi:10.1038/35087620, 35087620 [pii]

    Article  PubMed  CAS  Google Scholar 

  52. Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D (2001) Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 21(19):6484–6494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Marshall WF (2002) Order and disorder in the nucleus. Curr Biol 12(5):R185–R192, S0960982202007248 [pii]

    Article  PubMed  CAS  Google Scholar 

  54. Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38(9):1005–1014. doi:10.1038/ng1852, ng1852 [pii]

    Article  PubMed  CAS  Google Scholar 

  55. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951. doi:10.1038/nature06947, nature06947 [pii]

    Article  PubMed  CAS  Google Scholar 

  56. Parada L, Misteli T (2002) Chromosome positioning in the interphase nucleus. Trends Cell Biol 12(9):425–432, S0962892402023516 [pii]

    Article  PubMed  CAS  Google Scholar 

  57. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S (2006) Chromosome territories–a functional nuclear landscape. Curr Opin Cell Biol 18(3):307–316. doi:10.1016/j.ceb.2006.04.007, S0955-0674(06)00056-1 [pii]

    Article  PubMed  CAS  Google Scholar 

  58. Gandhi MS, Stringer JR, Nikiforova MN, Medvedovic M, Nikiforov YE (2009) Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells. Genes Chromosomes Cancer 48(3):222–228. doi:10.1002/gcc.20639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Heng HH, Goetze S, Ye CJ, Liu G, Stevens JB, Bremer SW, Wykes SM, Bode J, Krawetz SA (2004) Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci 117(Pt 7):999–1008. doi:10.1242/jcs.00976, 117/7/999 [pii]

    Article  PubMed  CAS  Google Scholar 

  60. Cai S, Han HJ, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34(1):42–51. doi:10.1038/ng1146 ng1146 [pii]

    Article  PubMed  CAS  Google Scholar 

  61. Schwartz GH, Patnaik A, Hammond LA, Rizzo J, Berg K, Von Hoff DD, Rowinsky EK (2003) A phase I study of bizelesin, a highly potent and selective DNA-interactive agent, in patients with advanced solid malignancies. Ann Oncol 14(5):775–782

    Article  PubMed  CAS  Google Scholar 

  62. Goulbourne CN, Malhas AN, Vaux DJ (2011). The induction of a nucleoplasmic reticulum by prelamin A accumulation requires CTP:phosphocholine cytidylyltransferase-alpha. J Cell Sci 124 (Pt 24):4253–4266. doi:jcs.091009 [pii]10.1242/jcs.091009

    Google Scholar 

  63. Leighl NB, Dent S, Clemons M, Vandenberg TA, Tozer R, Warr DG, Crump RM, Hedley D, Pond GR, Dancey JE, Moore MJ (2008) A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res Treat 108(1):87–92. doi:10.1007/s10549-007-9584-x

    Article  PubMed  CAS  Google Scholar 

  64. Su JS, Woods SM, Ronen SM (2012) Metabolic consequences of treatment with AKT inhibitor perifosine in breast cancer cells. NMR Biomed 25(2):379–388. doi:10.1002/nbm.1764

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Helfand BT, Wang Y, Pfleghaar K, Shimi T, Taimen P, Shumaker DK (2012) Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J Pathol 226(5):735–745. doi:10.1002/path.3033

    Article  PubMed  CAS  Google Scholar 

  66. Helfand BT, Loeb S, Cashy J, Meeks JJ, Thaxton CS, Han M, Catalona WJ (2008) Tumor characteristics of carriers and noncarriers of the deCODE 8q24 prostate cancer susceptibility alleles. J Urol 179(6):2197–2201. doi:10.1016/j.juro.2008.01.110, discussion 2202. S0022-5347(08)00257-7 [pii]

    PubMed  Google Scholar 

  67. Staebler A, Karberg B, Behm J, Kuhlmann P, Neubert U, Schmidt H, Korsching E, Burger H, Lelle R, Kiesel L, Bocker W, Shih Ie M, Buchweitz O (2006) Chromosomal losses of regions on 5q and lack of high-level amplifications at 8q24 are associated with favorable prognosis for ovarian serous carcinoma. Genes Chromosomes Cancer 45(10):905–917. doi:10.1002/gcc.20356

    Article  PubMed  CAS  Google Scholar 

  68. Hewitt SL, High FA, Reiner SL, Fisher AG, Merkenschlager M (2004) Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol 34(12):3604–3613. doi:10.1002/eji.200425469

    Article  PubMed  CAS  Google Scholar 

  69. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16(8):825–831. doi:10.1016/j.cub.2006.03.059, S0960-9822(06)01356-X [pii]

    Article  PubMed  CAS  Google Scholar 

  70. Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ (2007) Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J Cell Biol 176(5):593–603. doi:10.1083/jcb.200607054, jcb.200607054 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Ruault M, Dubarry M, Taddei A (2008) Re-positioning genes to the nuclear envelope in mammalian cells: impact on transcription. Trends Genet 24(11):574–581. doi:10.1016/j.tig.2008.08.008, S0168-9525(08)00228-X [pii]

    Article  PubMed  CAS  Google Scholar 

  72. Heessen S, Fornerod M (2007) The inner nuclear envelope as a transcription factor resting place. EMBO Rep 8(10):914–919. doi:10.1038/sj.embor.7401075, 7401075 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Gonzalez JM, Navarro-Puche A, Casar B, Crespo P, Andres V (2008) Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. J Cell Biol 183(4):653–666. doi:10.1083/jcb.200805049, jcb.200805049 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184(1):45–55. doi:10.1083/jcb.200804155, jcb.200804155 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Malhas A, Saunders NJ, Vaux DJ (2010) The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 9(3):531–539, 10511 [pii]

    Article  PubMed  CAS  Google Scholar 

  76. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29. doi:10.1186/1476-4598-5-29, 1476-4598-5-29 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72(5–6):397–402. doi:10.1159/000113489, 000113489 [pii]

    Article  PubMed  CAS  Google Scholar 

  78. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szasz AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137(6):1032–1046. doi:10.1016/j.cell.2009.03.047, S0092-8674(09)00390-0 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Valastyan S, Chang A, Benaich N, Reinhardt F, Weinberg RA (2011) Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes Dev 25(6):646–659. doi:10.1101/gad.2004211, 25/6/646 [pii]

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26(30):4442–4452. doi:10.1038/sj.onc.1210228, 1210228 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Vaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malhas, A.N., Vaux, D.J. (2014). Nuclear Envelope Invaginations and Cancer. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_24

Download citation

Publish with us

Policies and ethics